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CHAPTER 1. GENERAL INTRODUCTION 

Nanostructured materials are an emerging field for modem technology because 

their physical and chemical properties can be significantly different than those of bulk 

materials. A fundamental problem in this area is concerned with properties of the 

material/medium interface, especially in view of the extremely high surface-to-volume 

ratio of the nanostructure. Understanding how the adsorption of different molecules and 

ions on the surface modifies the interfacial behavior is important for many practical 

applications including microelectronics, non-linear optics, catalysis, and sensor design. 

The specific research objectives of this dissertation were fourfold: to prepare and 

characterize nanostructures of silver, to chemically modify the surfaces of the structures, 

to study the adsorption state and reactivity of the modifiers, and especially to monitor the 

optical properties of the surface-modified metal. 

Dissertation Organization 

The remainder of this chapter includes background and literature reviews for two 

important areas related to the dissertation research. First, the unique optical properties of 

nanostructured metals are described, including the possible influences of surface 

modification. Second, surface-enhanced Raman spectroscopy (SERS), a laser-based 

analytical method extensively used in the current work, is described in a brief theoretical 

treatment. A review of recent practical applications of SERS as well as advances in single 

nanostructure and single molecule detection is also provided. 
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Chapters 2 through 5 of this dissertation include papers that have been written for 

peer-reviewed journals. Chapter 2, a paper to be submitted to the Journal of Solid State 

Chemistry, was an analysis of chemically-prepared, nanostructures of silver by 

transmission electron microscopy. Both imaging and dif&action modes of the electron 

microscope were employed to characterize the two- and three-dimensional shape and 

crystal structure of the metal. Chapter 3, a paper published in the Journal of Physical 

Chemistry, Volume 100 (1996), Page 4672, was both a phenomenological report and a 

fiandamental study describing the reduction of the protein cytochrome c at halide-modified 

surfaces of silver nanostructures. The optical properties of the modified metal as well as 

the chemical interactions of the protein and halide modifiers with the metal surface were 

of particular interest. 

Chapter 4, a paper accepted for publication in the Journal of Electroanalytical 

Chemistry, manuscript number 5131, was a continued study of the reductive properties of 

halide-modified silver nanoparticles. More quantitative measurements using a redox 

active dye molecule were performed in order to elucidate the mechanism of the reduction 

process. Chapter 5, a paper submitted to the Journal of Chemical Physics, was a detailed 

spectroscopic study on the photophysics of iodide adsorbed on silver surfaces. Under 

appropriate conditions, an extraordinary emission spectrum was observed fi-om the 

modified-silver surface which contained contributions firom resonance Raman and 

resonance and relaxed fluorescence. 

The dissertation concludes with a general summary of research achievements and 

possible directions for future work. 
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Nanostructured Materials 

The intense purple and gold colors of 4th century Roman glasses, the ruby red and 

yellow brilliance of 12th century stained glass cathedral windows, and the pink tones of 

18th century Chinese K'ang Hsi porcelain were all crafted by embedding nanostructured 

gold, silver, and copper metals into the bulk materials.^ These nanostructured metals fall 

into the size range of ca. 20 A (around 250 atoms) up to ca. 100 nm (over 10^ atoms) 

which places them in the "intermediate region of matter" between classical atomic and 

cluster theories for discrete molecular orbitals and solid state physics descriptions of the 

band structxu-e in bulk materials. In the following sub-section, the theoretical treatments 

used to explain the unique optical properties of metal nanostructures are discussed. 

Optical Properties of Metal Nanostructures 

Metal structures derive their optical properties (reflection, absorption, etc.) from 

the behavior of the "free" conduction band electrons.^ These electrons are free to move 

throughout the volume of the metal, defined by a fixed background of positive ion cores. 

From a modem physics point of view, the metal can be thought of as a plasma. Electrons 

moving rapidly in the metal plasma can sometimes behave collectively and oscillate with a 

single quantum of energy.^ Indeed, the collective oscillation of electron density in metals, 

known as plasmon resonance, can be induced by an external electric field and has been 

demonstrated for several metals.' The plasmon resonance in a bulk metal propagates as a 

longitudinal wave with the plasmon frequency cOp given by 
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where N is the number of oscillating charges per unit volume, q is the electron charge, m is 

the effective electron mass, and sq is the permittivity. For a typical free electron metal, 

the charge density 10^ cm'^ which results in 0;^ « 5.7 x lO'^ sec"' or a wavelength of 

about 330 nm.^ Because the plasmon frequency varies from metal to metal, it provides a 

useful piece of spectral information about the material. It must be emphasized that the 

plasmon resonance is an optical property of bulk metals that is independent of the size of a 

metal structure, as noted from equation (1). 

In addition to plasmon resonances in the bulk metal, lower energy resonances 

associated with surface-charge oscillations can be induced. Surface plasmon resonances, 

unlike those in the bulk, are strongly dependent on material size, shape, and interfacial 

properties. The geometrical shape can affect the frequency as well as the number of 

resonances. An elliptical particle, for example, may possess two spectrally distinct surface 

plasmon resonances corresponding to the short and long axes of the material.^ Interfacial 

conditions such as excess surface charge, surface-chemical modification, and the dielectric 

environment also influence the frequency and bandwidth of the plasmon resonance.^'^-ii 

Mulvaney reported that only 0.1 monolayer of a dielectric layer electrodeposited on a 

metal surface caused significant shifts in the energy of the surface plasmon resonance.' 

Size, by far, has the largest impact on the nature of the surface plasmon. While metal 

structures of macroscopic dimensions (e.g. micrometers and larger) behave similarly to 
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bulk materials, nano-sized metal particles possess quite unique optical properties that are 

manifested in surface plasmon resonances. 

Metal structures of dimensions much less than the wavelengths of light, such as the 

nano-sized silver colloidal particles shown in Figure 1, have been the subject of intense 

theoretical and experimental work since the early 1900's.^ Most of this work focused on 

understanding the various colors of colloidal metal solutions. One of the most successful 

theories was developed by Gustav Mie in 1908 to explain the colors of gold colloids in 

water.^- A macroscopic approach was employed which used the classical Maxwell 

equations and essentially averaged the effects of an incident electric field over the volume 

of a nanostructure.^^ By taking into account particle size-dependent dielectric flmctions, 

the Mie theory provided an exact solution for the efficiencies Q of light absorption (abs) 

Figure 1. Transmission electron micrograph of nano-sized silver colloidal particles. 
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and scattering (sea) by small particles. The sum of the two contributions yields an 

experimentally measurable value given by 

Qext ~ Qabs Qsca (2) 

where Qexi is known as the efficiency of extinction and describes the total attenuation of 

light by small particles. The particle size dependence of pure absorption, scattering, and 

extinction for a gold colloid according to the Mie theory is depicted in Figure For 

spherical particles of radius 20 nm, the extinction band has a maximum around 530 nm 

and is comprised almost entirely of pure absorption (Q factor « 2), there being only a 

small contribution from scattering {Q « 0.1), Figure 2(a). Under these conditions, the 

colloidal solution has a red color. For particles with a radius of 50 nm, the extinction band 

Q Q Q 

ext 
abs 

sea 

0.45 0.55 0.65 M 

ext 

sea ext 

sea 

abs 

abs 

Q = l 
Q = l  

0.45 0.55 0.65 w 0.45 0.55 0.65 M 

Figure 2. Extinction spectra according to Mie theory for different sizes of gold colloidal 
particles (from Ref 13). The particle radii are (a) 20 nm, (b) 50 nm, and (c) 70 nm. 
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is shifted to a maximum around 580 nm and has a significantly increased efficiency of 

scattering {Q « 4) relative to the absorption. Figure 2(b). A colloidal solution of these 

particles has an orange-brown color. Finally, for particles with a radius of 70 nm, the 

extinction band is further shifted to around 610 nm and is dominated by the scattering 

component. Figure 2(c). The resultant Au colloidal solution has a blue color. The Mie 

theory has proven to yield accurate descriptions of the colors of nanostructured metals. It 

is therefore worth presenting some of the details of this theory. 

As was apparent in Figure 2(a), the Mie theory predicts that the extinction cross 

section is dominated by pure absorption for spherical structures having a radius less than 

certain values (/? = 13 nm for Au, /f s 8 nm for Ag).io The dipolar absorption cross-

section is given by the relation 

= (3) 
C [£,{(o) + 2eJ^ +^2H 

where c7abs(co) is the frequency-dependent absorption cross-section, co is the frequency of 

the incident radiation, c is the speed of light, Vq is the spherical particle volume, and £„ 

and sfcoj = eifco) + i£2(co) are the dielectric fionctions of the surrounding medium and of 

the particle material, respectively, In this size regime where the particle radius is much 

smaller than the wavelength of light, the instantaneous phase of the incident electric field 

is constant across the particle volume, which means that radiative dampmg terms due to 

retardation effects can be neglected. It is also interesting to note that higher order modes 

or multipoles can be optically excited. The probability of these resonances increases 

with increasing particle size. 
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A key result of equation (3) is tliat the optical properties of the sphere, in the small 

particle size regime, are determined solely by the real and imaginary parts of the complex 

dielectric function of the metal: ei(co) and £2(03), respectively. A peak appears in the Mie 

dipolar absorption cross-section at the frequency 03 when the condition £i((o) - is 

satisfied, as long as £2(0)) is not too large and is slowly varying (d£2/dco s: small) near the 

resonance. Nanostructures of silver, gold, and the alkali metals are unique in that this 

condition is satisfied for incident light in the visible region of the spectrum. As an 

example, the particle size-dependent components £1(03) and £2(03) of the dielectric function 

for Ag particles (/? < 10 nm) in an aqueous medium are shown in Figure 3.^ The above 

2.0 

€, 

300 400 500 600 TOO 

WAVELENGTH (nm) 

Figure 3. Real (si) and imaginary (£2) parts of the complex dielectric function for silver 
particles (radius < 10 nm) in an aqueous medium (from Ref. 8). 



www.manaraa.com

9 

condition is satisfied around the wavelength 380 nm where the Mie resonance peak occurs 

in the optical spectrum. Also noted is the position of the bulk plasmon resonance for Ag 

at 330 nm, well-resolved fi-om the Mie absorption band. This Mie resonance band was 

recognized by Doyle as corresponding to the surface plasmon resonance of the fi-ee 

electron metal.The surface plasmon, when described as a dipole resonance, is pictured 

as oscillating positive and negative "caps" near the surface of the particle. Figure 4. The 

firee electrons in the interior of the particle also participate in the resonance; however, the 

net electric field in the interior volume is zero as expected for a spherical conductor. 

Electric Field 

Light 

Surface 
Charges 

Figure 4. Polarization of a spherical silver particle under the influence of an incident, 
oscillating electric field, resulting in surface plasmon resonance. 

So far the discussion has focused on the spectral position of the surface plasmon 

resonance band. However, this optical resonance of the metal nanostructure also has a 

predictable bandwidth. The homogeneous contribution to the bandwidth reflects the loss 

of phase coherence of the collective electron oscillation. Phase loss results in a decreased 

lifetime of the resonance, manifested in the optical spectrum by a decrease in overall 

intensity and broadening ("damping") of the absorption band. Lamprecht and coworkers 
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measured the lifetime of the surface plasmon resonance to be 10 fs by second harmonic 

generation in lithographically designed, monodispersed Ag nanostructures of around 200 

nm size.i^ This fast decay accounted for nearly 74 rmi of the bandwidth in the observed 

extinction spectra. Inhomogeneous contributions to the bandwidth are also generally 

present and are caused by the distribution of particle sizes, shapes, and matrix effects. 

These contributions are tedious to treat theoretically and will not be discussed here. 

The homogeneous contribution to the absorption bandwidth has been described 

using a microscopic approach based on the Lorentz harmonic oscillator model for highly 

polarizable materials.^ In this model, the electrons and positive ion cores of the metal are 

viewed as a collection of independent, simple harmonic oscillators (i.e. "springs"). Each 

electron is thought to be cormected by a spring to a stationary ion core. The equation of 

motion for the single oscillating electron is given by 

m^-^ + b — + kx = qE (4) 
dr dt ^ ^ ' 

where m is the mass of the oscillating electron, 6 is a damping constant, k is the spring 

constant, E is the force exerted by a uniform electric field on the charge q, and x is the 

displacement of the oscillator from equilibrium.^ If the electric field has a time-dependent 

frequency co, then the displacement of the oscillator from equilibrium can be expressed as 

(5) 
(Dq -CO' -iyo) 

where coo' = k m' is the resonant frequency of the electron oscillator and y = b rn' is a 

phenomenological damping constant for the resonance. 
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The ensemble of independent, oscillating electrons in a metal also can be expected 

to oscillate collectively in response to an applied external electric field. As a result, there 

exists an induced dipole moment which is defined, normalized per unit volume, by 

0) ' 

p = —^ So E (6) 
cOq -co' -i/eo 

where P is the polarization of the collection of oscillators, (Vp is the classical bulk plasmon 

fi-equency previously given in equation (1), and eo is the permittivity. This induced 

polarization can be related to the dielectric properties of the metal (and therefore to the 

optical properties) by using the following classical relations for the polarization (P) of a 

material and for the complex dielectric function (s) given as 

P =€o x£ 0) 

€={  +  % (8 )  

where / is the electric susceptibility.^ By combining equations (6), (7), and (8), the 

frequency-dependent dielectric function for a collection of harmonic, oscillating electrons 

can be derived as 

s{co) = 1  +  — — : —  ( 9 )  
oJq' - co' - lyco 

Equation (9) is a fundamental relation of the Lorentz harmonic oscillator model for 

polarizable materials. It relates the complex dielectric constant, which was shown to 

directly determine the optical properties of metal nanostructures through the Mie 

resonance formula (equation 3), to the frequencies of the bulk plasmon resonance, the 



www.manaraa.com

12 

incident electric field, the harmonic oscillator resonance, and a damping factor. The 

damping factor is important in that it determines f he width of the Lorentzian lineshape. 

For real systems of simple metals, however, the Lorentz model is not quite correct 

because the electron oscillators are "fi-ee" electrons and are not bound by a spring. 

Equation (9) can be modified to account for this fact simply by "clipping" the spring. In 

this case, known as the Drude model for a fi-ee electron metal, the spring constant ^ = 0 

which results in the harmonic oscillator fi-equency coo' = 0. The complex dielectric 

fimction now can be rewritten as 

€{q))=1 (10) 
CO' + lyco 

Again with the goal being to understand the bandwidth of Mie absorption features (surface 

plasmon resonances), the previously mentioned equation (3) which describes the 

absorption cross-section can be rewritten using the dielectric fimction in equation (10) 

and the condition co^ oJi yielding 

=  ^ .  .2  (11 )  

where a>i is the fi-equency of the undamped Mie surface plasmon resonance given by 

and Sm is the dielectric constant of the surrounding medium."' A key feature of equation 

(11) is that the Drude damping constant y equals the real bandwidth, in frequency units, of 

the surface plasmon resonance of a nano-sized, free electron metal. In real systems, 
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damping of the plasmon results from scattering of the oscillating electrons with lattice 

phonons, neighboring electrons, or structural impurities. 

Recent experimental results suggest that the original Drude damping constant ;'is 

not sufficient for describing the observed bandwidth of surface plasmon resonances, 

While studying small silver clusters embedded in solid matrices, Kreibig and coworkers 

noted a significant increase in the plasmon bandwidth and small shifts in the plasmon 

frequency for decreasing particle sizes in the range 20 nm to 2 nm.'® The /of equation 

(11) does not account for size-dependence. The authors also noted that the equation for 

Mie dipolar absorption (equation 3) contains only one size-dependent term, the spherical 

particle volume Fo, which is in the prefactor and should not affect the plasmon resonance 

frequency or band shape. The experimental data was thus used to derive a new 

phenomeno logical damping parameter defined by 

= (13) 

where Fexpt is the particle radius R dependent damping constant of the observed spectra. To 

is the size-independent damping constant, and a is the slope of a fitted curve for the size 

dependence. The I/R dependence of the damping constant was found to fit reasonably 

well with other data compiled from the literature (Ref 'O, Figure 3), assuming the 

adjustable parameter a is dependent on the surrounding matrix. 

The above damping constant does not, however, successfully describe all systems. 

The surface plasmon resonance in many nanostructures exhibits strongly increased 

damping that appears to be independent of particle size. Several studies have focused on 

the phenomenon of "chemical interface damping" in which surface impurities, molecular 
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adsorption, or chemical reactions at the particle/matrix interface contribute to anomolously 

large damping factors.^'iO-H It should be emphasized that this is a relatively new area of 

research and broad theoretical descriptions have not yet evolved. 

Surface-Enhanced Spectroscopies at Nanostructured Metals 

The excitation of surface plasmon resonances in nanostructured metals results in a 

remarkable increase of the local electric field, relative to that of the incident electric field, 

near the structure's surface. It has been shown that this local electric field can cause the 

enhancement of various optical phenomena including Raman scattering, infrared 

absorption, fluorescence, second-harmonic generation, and four-wave mixing, 

Surface-enhanced Raman scattering spectroscopy was utilized extensively in the present 

work and is discussed in detail in the following section. 

Of importance here is the form of the metal nanostructures generally employed for 

surface-enhanced spectroscopies. By far the most common structures are nano-sized 

colloidal metal particles, thin metal films, and roughened metal electrodes.22 Colloidal 

particles, like those shown previously in Figure 1, are advantageous for a number of 

reasons: (1) preparation is relatively easy, (2) fresh samples are continuously available by 

stirring the suspension, (3) particle size and shape are controllable, and (4) extinction 

spectra are readily measured in a standard spectrophotometer. Colloids are also an ideal 

system in that the isolated particles are well-described by the Mie theory. Unfortunately, 

many colloidal metals in the natural suspended state are unstable and readily form 

extended aggregates, whose optical properties can be different than those of the isolated 
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particles.^® To overcome this problem, Cotton et al. and Natan et al. independently 

developed colloidal metal films (CMF) as substrates for surface-enhanced 

spectroscopies.20>23 -phe CMFs are prepared by the spontaneous adsorption of monolayers 

of nano-sized particles to glass substrates derivatized with functional groups that have a 

high affinity for the metal, such as SH, COOH, and NH3. A typical colloidal metal film is 

composed of isolated particles, as shown in the scanning electron micrograph in Figure 

5.24 CMFs are ideal substrates for several reasons: (1) the optical properties of the metal 

nanostructures are identical to those of the firee particles in solution, (2) they can be readily 

transferred into any solution, and (3) they are stable over long periods of time.20 Colloidal 

metal films formed firom Ag nanostructures played an important role in the current studies 

of Chapters 3 and 4. 

Figure 5. Scarming electron micrograph of a silver colloidal metal film (from Ref 24). 
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Bulk metal electrodes and thin metal films are also useful as substrates for surface-

enhanced spectroscopies. The latter are generally formed by lithographic techniques, in 

which highly-ordered periodic arrays are created, or by vapor-depositing the metal onto 

appropriate substrates.22 ^ thin silver film prepared by vapor-depositing ca. 1 |im 

equivalent mass thickness of the metal onto glass is shown in Figure 6.^^ From Figure 6 it 

can be clearly seen that the thin metal film is composed of nano-sized Ag structures, 

similar in two-dimensional shape to the colloidal metals. Surface plasmon resonances can 

be optically excited in these Ag structures, providing the high local fields for surface-

enhancement. Even larger enhancement factors can be obtained, however, at roughened 

bulk metal electrodes and roughened thin metal films.22 The roughening is generally 

accomplished by immersing the metal into highly acidic solutions or, more preferably, by 

electrochemical procedures in which the metal is successively oxidized from the surface 

into an aqueous solution and then reduced back onto the metal surface. The application of 

an electrochemical roughening procedure to the thin Ag film of Figure 6 resulted in the 

silver surface shown in Figure 7.^^ The obvious result of the electrochemical procedure is 

that material is removed from the surface, creating atomically sharp and nano-scale 

roughness features. Appropriate theories have been developed to describe the optical 

properties (including surface plasmon resonances) in these roughened surfaces.-^ 

The unique optical properties of nanostructured metals, specifically surface 

plasmon resonances, play an important role in several modem analytical methods 

including surface-enhanced Raman scattering spectroscopy. In addition, extinction spectra 
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Figure 6. Scanning electron micrograph of a vapor-deposited thin Ag film (from Ref 24). 

Figure 7. Scanning electron micrograph of a vapor-deposited thin Ag film, roughened by 
an electrochemical procedure (from Ref 24). 
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of the plasmon resonances are extremely sensitive to interfacial properties of the metal, 

making them useful for the study of chemical reactions at the metal/solution interface. 

Surface-Enhanced Raman Spectroscopy 

Molecules and ions which are near or adsorbed on certain nanostructured metallic 

surfaces can exhibit unusually strong Raman scattering. In many cases, intensity 

enhancement factors of 10^ to 10^ have been observed relative to the Raman scattering 

from the same species in the absence of the surface.^^ xhis phenomenon, known as 

surface-enhanced Raman scattering (SERB), plays an important role in the present 

dissertation research. SERS was employed as a spectroscopic method to characterize the 

interactions of protein molecules and small ions with Ag surfaces. The rich structural 

information provided by vibrational spectroscopies in addition to the inherent sensitivity 

to surface-adsorbed species make surface-enhanced Raman an appropriate choice for the 

current investigations. 

Electrochemists in the early 1970's discovered the SERS effect while adapting 

Raman spectroscopy to study molecular adsorption processes at the aqueous solution-

metal electrode interface.26-28 Fleischmann and coworkers observed changes in the 

frequencies and relative intensities of the normal vibrational modes of pyridine adsorbed 

on Ag as a function of electrode potential. From this work the authors concluded that 

pyridine adsorbed to the metal by coordination of the pyridyl N atom to the Ag surface. 

Then in 1977, while studying the same pyridine-silver system, two research groups 
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independently noted for the first time the significant enhancement of Raman scattering at 

the metal surface.-^-® 

Through around 1985, a majority of the work in the SERS field consequently 

focused on understanding the enhancement mechanism(s).i^'25J29 More modem studies 

have focused on applying SERS as a sensitive spectroscopic tool to address problems in 

such areas as chemistry, biochemistry, biophysics, and materials science 22.30.31 Through 

early 1997, over 3600 papers related to the SERS effect have been published including an 

average of around 130 papers per year from 1993 to 1996. 

The following sub-sections are intended to provide a brief review of the basic 

theoretical understanding of the SERS effect as well as to highlight significant recent 

achievements in the application of SERS for chemical analysis and analytical detection. 

Theoretical Considerations 

In the classical electrostatic theory for scattering, particles that are small compared 

to the wavelength of light can be polarized in the presence of a uniform electric field. 

The extent of polarization, or induced dipole moment //, depends on the polarizability a of 

the particle's electron density and the magnitude E of the applied electric field. The 

amplitude of the induced dipole moment is then given by the relation 

^ = a • E (14) 

where or is a tensor, a generalized vector having specified directional components, and the 

electric field E is assumed to be homogeneous. In the case where the particle is a 

molecule whose atoms can vibrate at a discrete frequency m and where the applied field 
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varies with time as in the frequency of a monochromatic light source col, equation (14) can 

be expanded to include the time-dependent terms and then simplified to the expression 

= aoE(f:os{coLt) + {V2)ccoE(fiQs{(OL- cok)t + Q/2)aoE(fios{coL + C0k)t (15) 

where ao is the polarizability of the molecule in its equilibrium geometry.-- The first term 

of equation (15) describes light that is scattered by the molecule at the same frequency as 

the incident light, or "elastically," and is referred to as Rayleigh scattering. The second 

and third terms describe radiation that is shifted in frequency, or "inelastically" scattered, 

relative to the incident light. These terms represent normal Stokes Raman scattering and 

Anti-Stokes Raman scattering, respectively, and inherently contain information about the 

vibrational frequencies of the molecule. 

If the molecule of interest is near or adsorbed on certain metal surfaces, the 

intensity of the Raman scattered radiation can be significantly enhanced. The origin of 

this surface-enhanced Raman effect has been explained by two classes of theories, both 

evident from equation (14): the electromagnetic (EM) enhancement mechanism and the 

chemical enhancement or charge-transfer (CT) mechanism. Metal surfaces that 

exhibit either of these mechanisms for surface-enhancement are often referred to as 

"SERS-active." 

In the EM theory, the electric field which polarizes the molecule also interacts with 

the metal substrate to induce plasmon resonances.^- As discussed in the previous section 

on nanostructured materials, the excitation of surface plasmon resonances combined with 
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the incident electric field generates a very high local electric field E which can enhance all 

optical phenomena occurring near the metal surface. It has been both predicted and 

demonstrated experimentally that the high local field can lead to enhancement factors of 

lO'* to 10^ of the Raman scattered light.29.33 

The EM enhancement mechanism is also thought of as a long-range effect because 

the local field decays with a 1/r'^ dependence, where r is the distance of the molecule 

from the metal surface-^"^ Murray and coworkers elegantly demonstrated this long-range 

effect by using optically transparent polymer spacer layers between a roughened Ag 

surface and a monolayer of /7-nitrobenzoic acid.^"^ The Raman scattering intensity was 

found to decrease by an order of magnitude in about a 50 A thick spacer layer. Two recent 

approaches to investigating this distance-dependence have employed Langmuir-Blodgett 

films and self-assembled monolayers of functionalized alkanethiols.^^"^^ Using self-

assembled monolayers on an electrochemically roughened Ag surface, Tsen and Sun 

monitored the ring-breathing mode in the SERS spectrum from phenyl terminated 

mercapto-A^-alkanamides of variable chain length. Figure 8.^^ The authors found that the 
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Figure 8. Distance-dependence of the SERS enhancement factor from a phenyl 
terminated mercapto-A^-alkanamide self-assembled monolayer (from Ref 37). 
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enhancement factor decayed by 50% in only 3.5 A, nearly a factor of 10 faster than 

previous reports.^'^-^^ Regardless of the slope of the decay curve, the important fact 

remains that, in the EM theory, molecules need not be in intimate contact with the metal 

surface for significant enhancement of Raman scattering to be observed. A consequence 

is that the observed SERS spectra are generally the same as those observed for free 

molecules in the vapor or condensed phases, making spectral interpretation 

straightforward. 

The chemical enhancement or CT mechanism, on the other hand, requires some 

form of direct electronic interaction between the molecule of interest and the metal. This 

interaction can be due to cj- or 7r-bonding, temporary charge-transfer with metal "active 

sites" (adatoms, small clusters, or defect sites), or electrostatic attraction.^^-^o The unique 

adsorbate-metal surface complex which is formed can significantly perturb the molecular 

polarizability a relative to the free molecule and can lead to SERS enhancement factors of 

10 to 100.-- Chemical enhancement of Raman scattering is expected to be a short-range 

effect, generally confined to the first monolayer of adsorbates, and is highly sensitive to 

the specific adsorbate-metal interaction. The latter often results in SERS spectra that are 

different from Raman spectra of the free molecule. Band shifts, changes in relative band 

intensities, and even new features can be observed.^® 

Moskovits and DiLella elegantly demonstrated the CT mechanism in studies of the 

adsorption of equimolar amounts of CO and N2 on a Ag surface.'*! j^e SERS spectrum 

for adsorbed CO was about 100 times more intense than that for adsorbed N2, even though 

the polarizabilities of the free molecules are nearly the same. It was also noted in the 
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spectra that the band due to adsorbed CO was shifted nearly 30 cm"' and broadened while 

the band due to adsorbed Ni remained unchanged relative to the bands observed on a 

silver-free surface. This fact led the authors to conclude that CO formed a charge-transfer 

complex with the metal which gave rise to significant chemical enhancement of the 

Raman spectrum. 

As an empirical model, the CT theory has been quite successful at explaining 

Raman data. It has proven difficult, however, to characterize experimentally the SERS 

"active sites" which give rise to chemical enhancement, often described using Otto's 

adatom model.^^ In support of the adatom model, Choi et al. recently explained the time-

dependent decay of SERS intensities using a "random walk" model for the surface 

diffusion of Ag adatomsThe intensity of the 3500 cm"' band from H2O adsorbed on a 

Ag electrode was monitored for 90 min. The ureversible loss of Raman intensity was 

found to follow a non-simple exponential decay and suggested that adatoms traveled only 

short distances (ca. 2 A) to become incorporated in non-SERS active large adatom clusters 

and surface defects. While the paper provided a nice explanation of the dynamics of 

SERS intensities, no direct spectroscopic evidence was provided for the existence of the 

described adatoms. Besides surface restructuring, the loss of "adatom" activity often has 

been attributed to surface passivation. For example, Rubim and Nicolai recently reported 

that O2 effectively quenched the SERS signal from pyridine adsorbed on Ag, Cu, and Au 

electrodes in aqueous solution.'^^ Uncontrolled processes such as surface oxidation and 

restructuring have proven to be significant obstacles to the continuous or long-term use of 

substrates for SERS-based analyses. 
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In another fundamental study. Campion and coworkers are working to prove that 

the CT mechanism actually involves resonance Raman scattering through a charge-

transfer intermediate state.'^ The authors recorded spectra in ultrahigh vacuum of 

pyromellitic dianhydride (PMDA) on atomically smooth Cu(lOO) and Cu(l 11) single 

crystals, surfaces which are known to be inactive for the EM enhancement mechanism. 

First, the spectra were found to be strongly sensitive to the polarization on both surfaces, 

but in different ways. Molecular modeling indicated that these results could not be 

explained by simple reorientation effects. Second, the authors performed an excitation 

profile after discovering a strong resonance in the spectra of the PMDA monolayers in a 

spectral region where the free molecules did not absorb light. It was noted that the 

intensities of the resonant bands were not linearly affected by dosing the copper surfaces 

with multilayers of PMDA, consistent with the interpretation that a new adsorbate-surface 

electronic state was formed. Based on this work it is obvious that a complete 

understanding of the CT enhancement mechanism will require a thorough study of local 

electronic structure including both the adsorbate-metal complex and the bulk metal. 

A recent review by Brandt and Cotton reminds practitioners of SERS spectroscopy 

that neither the EM theory nor the CT theory alone can account for all observations in 

surface-enhanced Raman scattering experiments.^^ In most cases, the observed 

enhancement appears to be a product of the individual contributions of the EM and CT 

mechanisms. 
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Analytical Applications of SERS 

Beyond the use of surface-enhanced Raman spectroscopy for the fundamental 

studies of molecules and surfaces, SERS has been quite successfully demonstrated as a 

sensitive analytical method for qualitative and quantitative analysis.^® Some of the 

common problems to be dealt with in designing a SERS-based method of detection are {1) 

poor adsorption on the metal surface and/or fouling by strongly adsorbing species, (2) 

long-term stability of a surface, (3) reproducibility of SERS intensities both at different 

spots on a single substrate and among multiple substrates, and (4) concentration 

calibration curves that are useful over only a small dynamic range. A couple of these 

problems have been addressed in novel ways by the following authors. 

Recent advancements in the use of SERS-based detection have been described for 

flow injection analysis, gas chromatography, planar chromatography, and complexation 

analysis. Pothier and Force developed a flow injection analysis method for biologically 

important molecules using a computer-controlled potential waveform to efficiently adsorb 

and desorb the analytes at an Ag electrode.'^^ In an alternate approach, Rubim et al. 

demonstrated femtomol detection limits of Fe(II) using a novel spectroelectrochemical cell 

for flow injection analysis.'*^ In this work, the authors prepared a fresh silver surface just 

prior to the injection of analyte by introducing Ag"^ ions to the flow system and 

electrodepositing the silver on a glassy carbon electrode. Anodic stripping to clean the 

carbon electrode between analytes thus maintained a clean, stable SERS-active surface. 

SERS-based detection in planar chromatography was recently reviewed by Somsen 

and coworkers."^^ One notable study was by Caudin and coworkers in which sub-
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femtogram amounts of i[\-trans crocetin were measured on TLC plates pre-coated with 

Ag colloid.'*^ Roth and Kiefer demonstrated the use of SERS detection in gas 

chromatography by trapping a pyridine eluant in colloidal Ag solutions and on colloid-

coated TLC plates.'^^ A more sophisticated approach to GC-SERS was demonstrated by 

Carron and Kennedy in which o,/w,/7-xyIenes were detected on a propanethiol-coated Ag 

foil.^o The modified silver surface provided both a hydrophobic interface to promote 

adsorption of the organic molecules and prevented detrimental oxidation of the SERS 

"active sites." 

Surface-enhanced Raman spectroscopy also has been employed for quantitative 

host-guest complex and chelator-metal complex analyses. An interesting example of the 

former involved azo dye molecules which strongly interacted with thiol-derivatized 

cyclodextrin-modified Ag surfaces.^' hiclusion of the guest dye molecules into the host 

cyclodextrin cavity was monitored by predictable changes in the SERS spectra of the dyes. 

Examples of chelator-metal complex formation include a thiol-derivatized resorcinol-

modified Ag surface for the detection of Cu, Pb, and Cd at ppb levels^^^ pyridyl and 

phenanthroline chelators adsorbed on Ag colloids for the detection of Co, Ni, and Fe also 

at ppb levels^^, and benzoic acid adsorbed on Ag colloids for the measurement of anion 

exchange constants with the metal.^^ 

Surface-enhanced Raman spectroscopy appears to be a useful practical technique 

for routine analysis providing molecular specificity, high sensitivities, and low limits of 

detection. 
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Single Molecule Detection 

Pushing the limits of ultratrace detection, several authors have recently reported 

SERS from isolated single metal particles and, more impressively, SERS from single 

molecules.55'5^ Xiao et al. claimed to demonstrate for the first time SERS from spatially 

isolated, single Ag particles.^^ The isolated nanostructures were lithographically prepared 

using a scaiming probe microscope tip to etch a thiol self-assembled monolayer on a gold 

electrode followed by electrochemical reduction of Ag* preferentially into the etch "pits." 

Using a focused laser, diffraction-limited spot, spectra with reasonable signal-to-noise 

were then obtained from /ranj-4-mercaptomethyl stilbene molecules adsorbed on the Ag 

surfaces. The authors calculated SERS enhancement factors of ca. 10'* for the single 

particles and of ca. 10^ for closely-spaced clusters of particles. The latter is an interesting 

resuh from which Xiao et al. speculated that additional enhancement occurred for 

molecules positioned in the space between particles due to electromagnetic coupling of 

plasmon resonances. 

The detection of single molecules using SERS spectroscopy was recently reported 

independently by two groups.^^-^^ Kneipp and coworkers observed spectra from single 

crystal violet molecules under resonance conditions with near-IR excitation, thereby 

taking advantage of an estimated lO'"* enhancement factor.^^ The low concentration limit 

was achieved by diluting the dye in a Ag colloid solution to 3.3 x 10"''* M and probing a 

volume of about 30 pL with a Raman microscope. This yielded an estimated 0.6 dye 

molecule and about 100 Ag particles in the probed volume, a ratio unlikely to yield the 

sampling of more than one molecule. The authors presented a sequential acquisition of 
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100 spectra measured in 1 sec intervals along with a time-profile of a single vibrational 

band. The latter showed the "on" and "off' behavior of the SERS scattering and, based on 

Poisson statistics, was consistent with an average of 0.5 molecules in the scattering 

volume per 1 sec integration time. 

Using a different methodology, Nie and Emory observed spectra from single 

rhodamine 6G molecules on single Ag nanoparticles under resonance conditions with 

green excitation.^^ A unique feature of this study was the use of an integrated optical and 

atomic force microscope, which allowed sequential Raman scattering and topographical 

information to be recorded from the colloidal Ag particles immobilized on a polylysine-

coated glass substrate. After incubating the substrates for about 3 hours with < 2 x 10'" 

M dye solutions, each Ag particle was estimated to carry an average of < 1 dye molecule. 

The authors collected wide-view SERS images by evanescent wave excitation which 

showed the distribution of "hot particles" that contained adsorbed dye. Nie and Emory 

also conducted measurements of the polarization dependence of the Raman scattering with 

respect to the single particle orientation. For example, ellipsoidal single particles were 

found to give only SERS spectra for excitation light polarized along the long axis of the 

given particle, as shown in Figure 9. SERS enhancement was thus considerably stronger 

for plasmon resonances excited along the particle long axis, relative to those excited along 

the short axis. To test if the observed polarization was purely due to the particle 

orientation and/or to dye molecule orientation, another experiment was performed in 

which the SERS spectra were excited with polarization-scrambled incident light and a 

dichroic polarizer prior to detection. This arrangement was then intended to eliminate the 
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Figure 9. Surface-enhanced Raman spectra excited with linearly polarized light of single 
rhodamine 6G molecules on oriented single silver nanostructures (from Ref 57). 

orientation effect of the particle. The observed spectra seemed to indicate that the surface-

enhanced Raman scattering from the dye was highly polarized, contrary to previous 

reports that SERS yields only depolarized scattering.^^ Several interesting results were 

presented in this work which demand further investigation. 

The apparent observations of surface-enhanced Raman scattering from single 

nanostructures is a monumental achievement which should discount the belief that 

aggregates or clusters of particles are required for appreciable SERS. It also proverbially 

"opens the door" to a variety of particle size, shape, and structure dependent analyses. The 

further observations of SERS spectra from single dye molecules demonstrate the 

attainment of the ultimate limit of detection for an analytical method, that of the single 

molecule. 
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CHAPTER 2. THE SHAPE AND STRUCTURE OF SERS ACTIVE 
SILVER NANOSTRUCTURES 

A paper to be submitted to the Journal of Solid State Chemistry 

Morgan S. Sibbald and Therese M. Cotton 

ABSTRACT 

Chemically-prepared nanostructures of silver were analyzed by transmission 

electron microscopy and were found to have a mean diameter of 99 ± 10 nm. These Ag 

structures had mostly regular polyhedral geometries including two-dimensional trigonal, 

square, pentagonal, and hexagonal shapes, indicative of the isotropic aqueous environment 

in which the crystals were grown. Quantitative analysis of the crystallographic structure 

using selected area diffraction and convergent beam electron diffraction techniques 

indicated that the Ag nanostructures were composed of a face-centered cubic phase and 

had a lattice constant a = 4.05 ± 0.11 A, consistent with previous studies of fee silver. 

INTRODUCTION 

Suspensions of nanometer-sized silver particles have been studied as catalysts for 

condensed phase reactions and as substrates for enhancing Raman scattering from 

adsorbed molecules (1,2). The latter, known as surface-enhanced Raman scattering 

(SERS), arises partially from the unique optical properties of colloidal metals such as 

silver, gold, and copper (3). For particles of dimensions less than the wavelengths of light, 

discrete surface plasmon resonances can be optically excited. Existence of a plasmon 

resonance produces a tremendous increase in the local electromagnetic field near the 
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particle's surface (4). This local field can function to enhance all light-dependent 

phenomena occurring at or near the metal surface. Signal enhancements of up to lO' have 

been observed in SERS measurements of adsorbed pyridine by several authors (5-7). In 

combined SERS and electrochemical experiments, Feilchenfeld et al. recently 

demonstrated a plasmon-assisted electron transfer process from the Ag metal to surface-

adsorbed viologen cations (8). Plasmon resonances thus can serve to improve the 

sensitivity of analytical methods as well as to promote a variety of surface reactions. 

Of fundamental importance to understanding these unique optical properties is the 

correlation between the observed optical extinction spectra, composed of contributions 

from absorption and scattering, and their crystalline structure including size, shape and 

uniformity. The crystal structure for particles of nanoscale dimensions can effectively be 

probed by using transmission electron microscopy (TEM) imaging and diffiraction. 

Previous TEM work has shown a variety of crystal shapes exist for colloidal Ag including 

trigonal, pentagonal, and hexagonal structures (9,10). Single Ag particles in a colloid 

formed by poly(ethylene imine) reduction of AgNOs were described by Duff et al. as 

either single crystalline or highly strained "multiple twins," particles composed of several 

single crystal components formed under stress during crystal growth (9). 

In the present work, silver nanostructures prepared by citrate reduction of AgNOs 

in aqueous solution were studied by TEM. While the optical properties of these colloids 

were recently reported, nothing is known of their shape and crystal structure (11). These 

physical properties for Ag clusters and single Ag particles were studied using bright field 

imaging, selected area diffraction, and convergent beam electron diffiaction methods. 
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EXPERIMENTAL METHODS 

Colloidal silver particles were prepared by chemical reduction according to the 

Lee-Meisel method (12). Approximately 90 mg of silver nitrate (Aldrich, 99+%) was 

dissolved in 800 mL of deionized water (Millipore Milli-Q, 18 M-Q resistivity) and was 

brought to boiling. The reducing agent tris-sodium citrate was then added as 10 mL of a 

1% (w/w) solution. Boiling was continued for ca. 60 to 90 min with continuous stirring 

until the reduction of silver salt was complete. Typical colloids had a surface plasmon 

band Xma* « 450 run and an optical density > 8. 

Samples for electron microscopy were prepared by evaporating drops of the 

colloidal solutions on carbon-stabilized Formvar films (Ted Pella). The ca. 10 nm carbon 

overcoat served to minimize charging effects under the electron beam. The films were 

supported on 200 mesh copper grids. 

Bright field imaging and selected area diffraction electron microscopies were 

performed on a JEOL lOOCX microscope operating at 100 kV. Convergent beam electron 

diffraction and high resolution imaging on single particles was performed on a Phillips 

CM-30 microscope operating at 300 kV. For both instruments, the appropriate camera 

constants (cA.) were calibrated using selected area diffraction zones, also referred to as 

Debye rings, from polycrystalline gold. The accepted lattice constant for gold is a = 4.079 

A (13). The gold standard was prepared by depositing a thin film of the metal onto a 

Formvar-coated grid. CBED diffraction pattems were also computer simulated using the 

Macintosh software Desktop Microscopist (Virttial Laboratories Inc., Albuquerque, NM). 
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RESULTS AND DISCUSSION 

Bright field images of the chemically-prepared, silver nanostructures were 

obtained to evaluate the crystal size, shape and structure. A representative cluster of 

particles is shown in Figure 1. The mean particle diameter was determined from several 

micrographs containing about 200 particles each to be 99 ± 10 nm. Most of the particles 

appeared to be highly geometrical in shape, although several irregular forms were also 

present. The typical two-dimensional shapes included trigonal, square, pentagonal and 

hexagonal stmctures. These regular polyhedra most likely reflect the isotropic aqueous 

environment in which the crystals were grown. 

Several particles such as the one labeled (a) in Figure 1 had a pentagonal 2D shape 

with five sharp, dark contrast lines that met at a common point in the crystal. These 

contrast lines may be due to "twin" or grain boundaries, suggesting that the particle is not 

a single crystal. More likely the particle is composed of multiple crystal components, 

consistent with previous studies (10). However, one cannot rule out the possibility of 

stacking faults giving rise to the contrast lines, which could exist in a single crystalline 

phase (10). Based on several micrographs, approximately 80% of the particles appeared to 

be twinned with regular polyhedral shapes. 

Other sources of intensity contrasts observed in Figure 1 included thickness fringes 

and bend contours. In the particle labeled (b) in Figure 1, the relatively sharp intensity 

oscillations near the crystal edges are thickness fringes. These fringes are caused by 

anomalous absorption of the transmitted elecfron wave with increasing crystal thickness. 
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Figure 1. Transmission electron micrograph of a typical cluster of chemically-prepared, 
silver nanostructures; (a) Single particle having a 2D pentagonal shape and strong 
intensity contrasts at the twin boundaries; (b) Single particle exhibiting thickness fringes; 
(c) Single rod-like particle exhibiting bend contours at the regions of strain. 
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The presence of these thickness fringes is indicative of the three-dimensional particle 

shape. Bend contours, apparent in the rod-like particle labeled (c) in Figure 1, are caused 

by variations in orientation within the crystal and generally indicate local regions of strain. 

In order to better evaluate the detailed structure of the nanoparticles, quantitative 

measurements of electron diffraction were performed. The selected area diffraction 

pattern from a cluster of several particles, shown in Figure 2, consisted of a series of 

concentric sharp rings. These rings, known as Debye rings, are characteristic of a 

polycrystalline phase or, in the case of single nanostructures, could be due to multiple 

randomly oriented single crystalline phases, hiterplanar spacings (d-spacings) for the first 

four diffraction rings were calculated by the camera constant method and are given in 

Table 1 (14, 15). The experimental d-spacings agreed within 3% of the values predicted 

for a face-centered cubic Ag crystal (13). This fact strongly suggests that the chemically-

prepared silver nanostructures are composed of a face-centered cubic phase. Assuming 

the fee structure type, the lattice constant was then calculated to be a = 4.05 ± 0.11 A from 

several diffraction measurements. 

Table 1. Observed interplanar spacings taken from the selected area diffraction pattem of 
a cluster of silver nanostructures and predicted spacings for fee silver. 

Observed dhw (A) Predicted® dhw (A) Reflection Type 
2.320 2.350 {111} 
1.992 2.036 {200} 
1.404 1.439 {220} 
1.215 1.227 {311} 

® Based on fee silver thin films, a = 4.071 A (13). 
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Figure 2. Selected area diffraction pattern from a cluster of silver nanostructures. 
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Additional confirmation of the fee structure type was obtained using the 

convergent beam electron diffraction (CBED) method. The primary advantage of CBED 

over conventional selected area diffraction is the inherent ability to focus the beam down 

to cross-sectional dimensions comparable to or less than the size of the single particles. 

The single Ag nanostructure shown at high magnification (480,000x) in Figure 3 was 

analyzed using this technique. By converging the electron beam on the region which 

appeared dark in the image, the CBED pattern shown in Figure 4 was obtained. The 

sample was then physically tilted ca. 36° along a low-index Kikuchi line to obtain the 

diffraction pattem shown in Figure 5. The observed interplanar spacings in the CBED 

100 mn 

Figure 3. Bright field transmission electron micrograph of a single, multiply-twiiuied 
silver nanostructure at high magnification (480,000x). 
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Figure 4. Convergent beam electron diffraction pattern taken along the [ 1II ] zone axis of 
the single silver nanostructure of Figure 3. 

Figure 5. Convergent beam electron diffiaction pattem taken along the [ 101 ] zone axis of 
the single silver nanostructure of Figure 3. 
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Table 2. Observed interpianar spacings taken from the convergent beam electron 

Zone Axis Observed dhu (A) Predicted^ dhw (A) Reflection Type 
[111] 2.503 2.350 {111} ?? 

1.446 1.439 {220} 
[101] 2.405 2.350 {111} 

2.095 2.036 {200} 

Based on fee silver thin fihns, a = 4.071 A (13). 

patterns for reflections nearest the zero order disc along with those values predicted for fee 

Ag are given in Table 2. The experimental d-spacings agreed within 3% of the predicted 

values. The forms of the CBED diffraction patterns were consistent with computer 

simulated CBED patterns for [111] and [101] zone axes of an fee Ag crystal, Figure 6. 

Also, the observed interpianar angle of 36° was in good agreement with a predicted angle 

of 35.3° between [111] and [101] zone axes (13). Based on these results, the two 

experimental diffraction patterns are assigned as [111] and [101] zone axes of an fee Ag 

crystal. Figures 4 and 5 respectively. 

A curious result of the CBED experiments was the appearance of low intensity 

extra reflections on the [111] zone axis. Figure 4. The interpianar spacing for the six discs 

nearest the zero order disc was 2.503 A. To a first approximation, these reflections could 

be of the {111} type. However, the observed d-spacing is considerably larger than the 

2.350 A expected for {111} planes. And more importantly, it is known that six different 

{111} type planes do not exist in an fee phase. A computer simulated CBED pattem 
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centered on the [111] zone axis for a thin silver crystal included similar extra reflections, 

shown in Figure 6. The simulation program also assigned these reflections as {111} type, 

depicted by the spots labeled "x" in the [111] zone axis pattern of Figure 6. At this time, 

no reasonable explanation for the extra reflections is apparent. 

% (022) W 
(220) •  X 

V ^ (202) 

' i s ? ' .  •  *  X  
X  ( 2 2 0 )  

X. i022i 

[111] 

[101] 

Figure 6. Computer simulated diffiraction patterns for an fee silver phase (a = 4.079 A) 
taken along the [111] and [101] zone axes. The parallel lines labeled with a tilt angle of 
35.3° represent the low-index Kikuchi line between the zone axis centers. 
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CONCLUSIONS 

Chemically-prepared silver particles of mean 99 ± 10 nm diameter were analyzed 

by transmission electron microscopy. These nanostructures exhibited regular polyhedral 

shapes including two-dimensional trigonal, square, pentagonal, and hexagonal, indicative 

of the isotropic aqueous environment in which the crystals were grown. Intensity contrasts 

observed within single Ag particles included thickness fringes due to three-dimensional 

variations in particle thickness, bend contours due to crystal defects and regions of local 

strain, and sharp, dark lines due to phase boundaries. Quantitative analysis of the 

crystallographic structure using selected area diffraction and convergent beam electron 

diffraction methods indicated that the particles were composed of a face-centered cubic 

phase having a lattice constant a = 4.05 ±0.11 A, consistent with previous studies of fee 

silver. 

In future experiments, CBED and centered dark field imaging techniques will be 

used to probe the three-dimensional forms of the single Ag nanoparticles. The latter 

should help distinguish between simple crystal defects such as stacking faults and multiple 

single crystal components defined by twin boundaries. 
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CHAPTER 3. REDUCTION OF CYTOCHROME C BY HALn)E-MODIFIED, 
LASER-ABLATED SHAVER COLLOffiS 

A paper published in the Journal of Physical Chemistry^ 

Morgan S. SibbaJd, George Chumanov, Therese M. Cotton 

ABSTRACT 

Silver colloids of 20 nm mean particle diameter were prepared by laser-ablation 

and modified by adsorption of iodide and bromide ions. Addition of cytochrome c to this 

colloid resulted in the reduction of the protein, which was monitored by surface-enhanced 

resonance Raman scattering and absorption spectroscopies. Colloidal metal films, 

prepared fi-om the same Ag colloid, were employed in order to minimize contributions 

from aggregation. Effects of surface modification on the Ag plasmcn resonance was 

studied in both colloidal suspensions and colloidal metal fihns. The conclusion was made 

that adsorption of I" and Bf results in charging of the Ag particle as a whole and a shift of 

its potential to more negative values. The donated charge is delocalized in a thin surface 

layer and does not significantly affect the plasmon resonance frequency of the particle. 

INTRODUCTION 

Colloidal platinum, gold and silver are known to catalyze various reduction 

reactions in aqueous solution. hi these reactions, an electron is transferred from a 

sacrificial donor molecule to a metal particle and further to an acceptor species. The role 

' Reprinted with permission from J. Phys. Chem. 1996, 100, 4672-4678. Copyright 
American Chemical Society. 
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of the metal particles is to accumulate electrons and build up potentials sufficient for 

reduction.'* When homogeneous electron transfer between the donor and acceptor is 

thermodynamically allowed but is kinetically slow, the metal particles can also increase 

the overall efiBciency of the reaction by trapping those species at the surface. ̂ 

Organic radicals have been the most widely used species as electron donors for the 

colloidal metal particles because they are easy to prepare and react readily with metals. A 

variety of methods for radical generation have been employed. Miller et al.^ 

electrochemically generated the methyl viologen cation radical (MV*"^) which transfers an 

electron to colloidal platinum. The resulting reaction was the decomposition of water to 

chemisorbed hydrogen at the Pt surface, ultimately producing molecular hydrogen. 

Although electron transfer from MV*"^ to water is energetically favorable, in the absence of 

colloidal metal the reaction does not proceed to an appreciable extent. The platinum is 

required to trap hydroniimi ions at the metal surface, thereby increasing the efficiency of 

the reduction reaction. McLendon and Miller^ produced reducing radicals in the presence 

of colloidal Pt by utilizing metalloporphyrins as photosensitizers. In this scheme, the 

porphyrin absorbs visible light and subsequently undergoes excited state quenching by 

electron transfer to the methyl viologen dication producing MV*"^. The viologen cation 

radical is then oxidized at the colloidal Pt surface, yielding H2 as a final product. 

Henglein and coworkers'* utilized y-radiation from a ®°Co source to produce 2-propanol- or 

1-hydroxy-1-methylethyl radicals which also generate molecular hydrogen in the presence 

of silver colloids. The efficiency of this process was found to depend strongly on particle 

size, metal composition as well as the donor species reduction potential.'* 
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In more recent work, the same authors showed that adsorption of nucieophiles such 

as CN", SH", CeHsS', T and PH3 strongly influences the catalytic as well as optical 

properties of Ag colloidJ-^ An observed decrease in intensity and a broadening of the Ag 

colloid plasmon resonance band was attributed to damping of the resonance by adsorbed 

species. Additionally, its spectral shift was assigned to changes in the charge distribution 

in the surface layer of the particle as a consequence of charge transfer from the adsorbed 

species to the metal. ^ It was also found that in the absence of an electron acceptor, charge 

is accumulated on the particles. For particles of 70 A mean diameter, the capacitance was 

determined to be 43 |iF per square centimeter of particle surface^, which is comparable to 

that of bulk electrodes. By generating a potential difference between the metal particles 

and the solution, methyl viologen dication or protons from water are reduced at the 

expense of silver oxidation to Ag"^ ions.^ 

Colloidal metal particles that are employed for catalysis are most frequently 

prepared by chemical reduction of aqueous metal salts. In the preparation of colloidal 

Ag, sodium borohydride or sodium citrate are common reducing agents for AgNOs, 

although a variety of other reductants have been employed as well. Silver colloids are also 

prepared using organic radicals and hydrated electrons, formed under y-radiation, as 

reducing agents of the metal ions J All of these methods suffer from one common 

disadvantage: the presence of oxidation products and extraneous ions in the suspension of 

metal particles. These will interfere with surface reactions and can cause uncontrolled 

aggregation. To minimize aggregation, a variety of stabilizers including polymers can be 
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added to the colloid.^ However, the stabilizers can interfere with surface reactions as well. 

A new and highly promising method for colloid preparation involves laser-ablation from 

bulk metal into high purity aqueous solution.In this method, the metal in water or other 

solvents is irradiated with a pulsed Nd: YAG laser for a period of time. As a result, finely 

dispersed metal particles form a stable colloid which is free from chemical reagents or 

ions associated with their surface. The optical density and size distribution ftmction can 

be controlled by varying the pulse energy and the time of ablation. 

In the present work, the addition of halide ions to an aqueous suspension of 

nanosized Ag particles prepared by laser-ablation is shown to reduce the native-oxidized 

form of cytochrome c (Cyt c). To our knowledge, this is the first demonstration of the 

direct reduction of a protein by chemically-modified Ag colloid. Evidence for the 

reduction of Cyt c was obtained from surface-enhanced resonance Raman scattering 

(SERRS) and light absorption spectroscopies. Particular attention was given to the effects 

of halide modifiers on the Ag plasmon resonance. The effects of halide-modification on 

Ag colloid were also compared with halide-modification of Ag colloidal metal films 

(CMF)ii and roughened Ag electrodes. CMFs are composed of an optical glass slide 

uniformly coated with isolated Ag particles. This is accomplished by covalent bonding of 

nanosized metal particles to the glass through fimctional groups with a high affinity for the 

metal such as -SH, -COOK, -NH3, -CN and -pyridyl.^^ The use of CMFs was intended to 

minimize aggregation effects on the extinction spectra of modified colloidal particles. 
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EXPERIMENTAL SECTION 

Chemicals and Materials. Water for the experiments was purified using a 

Millipore Milli-Q system and had a nominal resistivity of 18 MQ-cm. Silver metal 

(99.99%, Aesar (Johnson Matthey)) was sonicated in water prior to colloid preparation. 

Cytochrome c (Horse Heart, Type VI) was used as received from Sigma or purified 

according to published procedures. Purification did not noticeably influence the results. 

Bromide and iodide salts were dried at >100 °C under vacuum prior to use. Crystalline 

silver-iodide was prepared by adding a slight excess of KI to a solution AgNOs; the Agl 

precipitate was washed several times in water to remove excess ions. Molecular iodine 

solution was prepared by dissolving I2 in chloroform (HPLC grade). Triiodide solution 

was produced by mixing I2 with a slight excess of KI in methanol (HPLC grade) and 

yielded the characteristic I3" absorption spectrum. All other reagent grade chemicals 

were used without further purification. Unless otherwise stated, solutions were purged 

with high purity nitrogen gas prior to experiments. 

Colloid Preparation. Suspensions of nanosized Ag particles in water were 

prepared as described previously.^® Silver metal was ablated from a thin plate using 1064 

nm radiation (Nd:YAG laser, Quanta Ray DCR2A, Spectra Physics) with 55 mJ pulse 

energy at a 10 Hz repetition rate. Ablation proceeded for approximately 15 min. The total 

silver concentration in a colloid was determined by atomic absorption (Perkin-Ehner 

305B) measurements of samples dissolved in 1% (v/v) nitric acid. The concentration of 

Ag for a colloid with an optical density 3.6 measured at 396 nm was determined to be 3.2 
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(±0.1) X 10"^ M. The pH value of the Ag colloids was 6-7. When appropriate, 

suspensions were centrifiiged at 12,000 g. 

Electron micrographs were obtained using a JEOL 1200 STEM instrument 

operating at 100 kV. Samples for TEM were prepared by evaporating a drop of colloidal 

solution on a Formvar coated nickel mesh grid (Electron Microscopy Sciences). The 

laser-ablated Ag colloid employed in this study had a particle size distribution of 20 ± 4 

lun as determined from the analysis of several micrographs (Figure 1). 

Colloidal Metal Film (CMF) Preparation. Films were prepared on a glass 

substrate modified with a molecular adhesive (3-mercaptopropyl trimethoxysilane, MPS) 

according to the procedure described by Goss et al.*'^ Briefly, a coating solution was 

prepared containing 300 mL of 2-propanol, 6 mL of water and 6 mL of MPS. The 

adhesive layer was prepared by repeating the following steps three times; reflux the 

substrates in the coating solution for 10 min, remove and rinse in 2-propanol and dry at 

110 °C in an oven for 10 min. After the MPS-coated slides were cooled, they were 

immersed in a colloidal Ag solution for several days. Formation of uniform thin films of 

Ag particles was achieved in this manner. In the present study, all CMFs were prepared 

from the same suspension of laser-ablated Ag colloid. 

Raman Spectroscopy. Resonance Raman and surface-enhanced resonance 

Raman scattering spectra were obtained using the following excitation sources: (a) the 

514.5 nm line of an Ar"^ laser (Coherent, Irmova 200), (b) the 647.1, 752.5 or 799.3 nm 

lines of a Kr"*^ laser (Coherent, Innova 100) or (c) the 640.0 imi line from an Ar"" pumped-

dye laser (Coherent CR-599, R6G). The laser light was focused on the sample by a 
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cylindrical lens (f = 100 nm). The power at the sample was maintained at less than 10 

mW for all measurements. Scattered light was collected by a camera lens (CI .2) in a 

backscattering geometry and dispersed by a triple spectrometer (Spex, Triplemate 1877) 

equipped with a CCD detector (Princeton histruments, LN 1152 x 298). The total 

accumulation time was typically 400 seconds, in the spectral region ca. 1650-500 cm"' 

Figure 1. Electron micrograph of Ag colloidal particles prepared by laser-ablation. 
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data were calibrated with indene and in the region ca. 400-0 cm"' with a mixture of 

chloroform and bromoform in combination with the laser line. All Raman spectra are 

reported with a spectral resolution of 0.14 rmi. 

Electronic Absorption Spectroscopy. Absorption spectra were recorded on a 

UV-Vis spectrophotometer (Perkin-Elmer, Lambda 6) in a 1 cm pathlength quartz cuvette. 

Spectra were acquired at a scan rate of 120 nm/min, slit width of 1.0 rmi and were 

background corrected. The UV-Vis spectra for Cyt c solutions contained contributions to 

the absorbance from both oxidized and reduced forms of the heme. To quantitatively 

identify each constituent, a linear combination of equations was solved assuming the 

validity of Beer's Law. The constituent concentrations were determined using the molar 

absorptivities at the peak maxima of the a band in each form of cytochrome c (Fe® S528 = 

11,200 M"' cm"', Fe'^ S550 = 27,700 M"' cm"') as reported by Margoliash and Frohwirt.^^ 

RESULTS 

Cytochrome c reduction in modified Ag colloid. Cytochrome c was found to 

undergo reduction when introduced into a suspension of colloidal Ag mixed with aqueous 

r or Br' in micromolar concentrations. Other halides such as CI' and F at concentrations 

up to 100 mM did not affect the redox state of Cyt c under similar conditions. Reduction 

of Cyt c was also observed upon addition of S^' to the Ag colloid at concentrations similar 

to those of r. (The data with sulfide are not discussed in this paper.) 

Surface-enhanced resonance Raman scattering spectroscopy was used to monitor 

the reduction of Cyt c, Figure 2. These spectra were excited at 514.5 run, which is in 
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Figure 2. SERRS spectra of cytochrome c (7.4 |liM) in aqueous Ag colloid (optical 
density 7.2 at 396 nm) with different concentrations of iodide: (a) 30 fiM, (b) 60 fiM, (c) 
75 |iM and (d) 120 |aM. Excitation wavelength 514.5 nm. 
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resonance with the P absorption band of both oxidized and reduced forms of Cyt c. At the 

concentration of cytochrome c employed, no significant contributions to the Raman signal 

was observed from the Cyt c in solution. The bands at 1375 cm"' and 1363 cm'', 

attributed to the Ca-N breathing mode of the pyrrole macrocycle (V4), are commonly used 

as markers for the redox state of cytochrome c and correspond to oxidized and reduced 

forms, respectively. Assignment of these and other bands in SERRS spectra were 

reported by Hiidebrandt and Stockburger.'^ 

The total amount of reduced Cyt c depended linearly on the concentration of Ag 

colloid, once the molar ratio of halide to Ag exceeded a certain value. In other words, 

cytochrome c reduction occurred only after the concentration of halide became two to 

three times greater than that predicted for saturation coverage of the Ag surface (threshold 

behavior, vide infra). SERRS spectra of mixtures of oxidized and reduced forms of Cyt c 

at different iodide concentrations are presented in Figure 2. For convenience, the halide 

concentration at which the two bands 1375 cm"' and 1363 cm'' are equal in intensity was 

chosen as a reference point. Figure 2c. However, it should be emphasized that this 

reference point does not represent equal concentrations of oxidized and reduced forms. 

The contribution of each form to the observed signal depends on the resonance conditions, 

their molar absorptivity at the excitation wavelength and their affinity to the Ag surface. 

At the reference point, the concentration off added to the colloid was ca. 40 times lower 

than that for Br". 

It is known that Cyt c interacts directly with various anions, including halides.i8--0 

Therefore, competition may exist between Ag and Cyt c for iodide binding. We observed 
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slightly more (ca. 10%) reduced cytochrome c based on the intensity ratio of the 1375 cm"' 

and 1363 cm"' bands when F and Ag colloid were premixed before cytochrome c addition, 

relative to the case where F and Cyt c were mixed first and then added to Ag colloid. 

In order to address the possible role of light in the reduction of Cyt c on the surface 

of halide-modified Ag colloids, electronic absorption (UV-Vis) spectroscopy was 

employed. As silver/halide complexes are often photosensitive, photoreduction of Cyt c 

might occur under the high laser light intensities which are required for Raman 

measurements. Because UV-Vis measurements are typically performed under low light 

intensities, the effects of light can be minimized. Absorption spectroscopy also permits a 

quantitative determination of reduced Cyt c. It allows the measurement of reduced 

cytochrome c in solution, whereas SERRS spectroscopy, because of the inherent surface 

selectivity, detects primarily the surface species. 

Absorption spectra of Ag colloid mixed with F before and after addition of Cyt c 

are shown in Figure 3. The intense band at 396 nm in spectrum (a) is due to plasmon 

resonance in isolated Ag particles of 20 nm mean diameter. The peak at 226 nm is the 

charge-transfer-to-solvent transition of the hydrated iodide ion.i^ Upon adsorption of F to 

the metal surface, this band is no longer observed due to the loss of solvent supported 

excited states. The charge-transfer band of aqueous F was used as a marker for saturation 

coverage of the Ag surface by iodide. For colloids with a plasmon maximum at 396 nm 

and an optical density 0.70, saturation coverage of the Ag surface was achieved at about 4 

joM KI concentration. The lowest concentration of aqueous F which can be accurately 
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Figure 3. Extinction spectra of iodide-modified Ag colloid (a) before and (b) after the 
addition of Cyt c (25.1 |xM). The iodide concentration was 25.3 |iM. Insert: (b) Cyt c in I-
modified Ag colloid, (c) Cyt c reduced by sodium dithionite and (d) Cyt c in unmodified 

Ag colloid. 
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determined by absorption measurements is < 0.5 |iM, providing an accuracy of < 10% in 

these measurements. 

Addition of Cyt c to the colloidal suspension caused aggregation of the Ag 

particles. As a result, the distinct plasmon band at 396 imi was no longer observed and the 

Cyt c spectrum appeared on top of a broad backgroimd due primarily to scattering from 

aggregates. Figure 3b. From the spectral features between 500 and 600 nm, it is clear that 

Cyt c becomes more reduced upon F addition.^^ For comparison, spectra of cytochrome c 

without r (oxidized form) and sodium dithionite reduced are presented in Figures 3 c and 

3d, respectively. In these experiments, the samples were prepared in the dark. 

An attempt was also made to correlate the amount of reduced Cyt c with F and Ag 

colloid concentrations. The amount of reduced Cyt c was determined from UV-Vis 

spectra taken after the Ag particles were precipitated by centrifugation. Spectra were 

corrected for cytochrome c coprecipitated with the metal particles and were then compared 

to those of dithionite reduced Cyt c of equivalent concentration. For a constant Ag colloid 

concentration, it was found that the molar ratio of reduced Cyt c to iodide varied 

significantly for different sample preparations. These variations are attributed to 

differences in colloid aggregation, as initiated by addition of iodide. Aggregation affects 

the surface potential of individual particles^^ and, as a result, influences their reducing 

power. 

Cytochrome c reduction on modified CMFs. The films were immersed in 1.0 

mM KI solution for 30 min. to insure that saturation of the Ag surface by iodide was 

achieved, followed by a thorough rinse in water to remove excess F. The CMF was then 
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Table 1. Optical densities of colloidal metal films and equilibrium concentrations of 
cytochrome c. 

OD", au 
(^max? nm) 

0D^ au 
(^max> nm) 

Initial 
Cyt., (iM 

OD", au 
(^maxj nm) 

Final Cyt., jiM 
Oxidized State 

Final Cyt., joM 
Reduced State 

0.509 (388) 0.467 (389) 3.35 0.471 (394) 2.75 0.36 

0.487 (396) 0.452 (398) 2.97 0.450 (404) 2.00 0.52 

0.483 (395) 0.457 (397) 2.59 0.455 (405) 1.60 0.47 

0.528 (394) 0.501 (398) 2.97 0.504 (403) 2.40 0.25 

0.549 (396) 0.527 (397) 3.08 0.526 (404) 2.71 0.37 

0.591 (388) 0.540 (389) 3.22 0.556 (395) 2.61 0.32 

® Clean CMF in water.'' CMF in water after exposure to 1.0 mM KI. CMF in water after 

exposure to 1.0 mM Kl and cytochrome c. 

exposed to ca. 3 |iM Cyt c for 15 min. Longer immersion times in KI or Cyt c solutions 

did not significantly influence the amount of reduced Cyt c. All manipulations were 

performed under an argon atmosphere and with continuous N2 purging of solutions. The 

amount of reduced cytochrome c was measured by UV-Vis spectroscopy after removal of 

the CMF. The data are summarized in Table 1. 

The extinction spectra of the CMFs were examined after exposure to F and Cyt c. 

Only small changes were observed in the spectra following adsorption of iodide. After 

exposure to Cyt c solution, the plasmon band decreased in intensity, broadened by less 

than 10% and shifted 6-10 nm to the red spectral region. These changes are attributed to 
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the effect of the local dielectric environment on the plasmon resonance of the metal 

particles, which has been described previously, 

Iodide adsorption on silver. A series of experiments were performed to elucidate 

the role of the halide-metal interaction in the Cyt c reduction phenomenon. Upon addition 

off in concentrations up to several hundred micromolar to the Ag colloid, a red-shift, 

broadening and decrease in intensity of the plasmon resonance band was observed. Figure 

4. These changes were found to be independent of the monovalent cation and are typical 

of partially aggregated colloids, when small irregular clusters of particles are formed. At 

higher T concentrations, the plasmon band shifted back toward the blue spectral region but 

remained broader and weaker in intensity relative to the band of the unmodified Ag 

colloid, Figure 4a. The blue-shift of the plasmon band is due to etching of the silver, as 

confirmed at longer times by the appearance of the bulk Agl absorption band at 428 nm--

(insert of Figure 4). Etching reduces the mean particle diameter and, according to Mie 

theory23, results in a shift of the plasmon resonance band to the blue spectral region. This 

effect is promoted by oxygen and was found to be more rapid in air-saturated solutions. 

If the red-shift of the Ag Plasmon band at low F concentrations is in fact caused by 

aggregation, then colloidal metal fihns are an ideal substrate for testing this hypothesis. A 

CMF was exposed stepwise for 30 min. to increasing concentrations of KI solution under 

continuous N2 purging. Extinction spectra were measured after each exposure. As the 

surface coverage of T on the Ag particles was increased, a decrease in intensity and 

broadening of the plasmon resonance band was observed. Figure 5. All significant 

changes in the spectra occurred at F concentrations below saturation coverage of the 
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Figure 4. Extinction spectra of iodide-modified Ag colloid as a function of KI 
concentration: (a) 0 joM, (b) 4 )iM, (c) 8 ^iM and (d) 48 uM. Insert; extinction spectrum 
of Agl formed by exposure of Ag colloid to air-saturated, 1.6 mM KI solution. 
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0, 0.6, 1.8, 5.0 and 84.0 jiM KI. where the arrow indicates the direction of changes with 
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surface. Small changes in the spectra which occurred at higher T concentrations (up to 20 

times saturation) are attributed to slow adsorption kinetics. It is also important to note that 

the CMF plasmon resonance did not shift significantly after exposure to iodide, in contrast 

to what was observed in the colloidal suspensions. 

Adsorption of halides at the metal surface was also monitored by surface-enhanced 

Raman Spectroscopy (SERS). The metal-halide stretch was manifested in the spectrum as 

a broad band (ftill-width at half-maximum ~ 30 cm"') at 246 cm"' for Ags-Cl, 156 cm"' for 

Ags-Br and 112 cm"' for Ags-I, where Ags represents the silver surface.^^--^ The SERS 

spectrum of Ag colloid mixed with KI solution and SERS spectra obtained from Ag 

electrode exposed to I2 and I3' solutions are shown in Figure 6. The Ag electrode, 

roughened by a double-potential step oxidation-reduction cycle according to published 

procedures27, ^^35 used for SERS measurements oflj and I3' because these species were 

prepared in chloroform and methanol to insure the highest concentration of their pure 

forms. These solvents are incompatible with aqueous colloids. The spectra were obtained 

at open circuit potential where iodine species are known to adsorb strongly to noble 

metals. SERS spectra shown in Figure 6 were nearly identical to those obtained at the 

other excitation wavelengths used in this study. 

The Raman spectrum of chemically prepared, polycrystalline Agl is shown in 

Figure 7a. This spectrum is very similar to those of iodide species adsorbed on the silver 

surface (compare with Figure 6). However, it was noted that a darkening of the initially 

yellow Agl powder occuned upon exposure to the laser light, presumably as a result of 

photoreduction of Agl to metallic silver. Precautions were undertaken to minimize 
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Figure 6. SERS spectra of (a) Ag colloid mixed with KI solution: excitation wavelength 
647.1 nm; (b) Ag electrode exposed to I2 in chloroform: excitation wavelength 752.5 nm, 
(c) Ag electrode exposed to I3" in methanol: excitation wavelength 640.0 nm. 
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Figure 7. Raman scattering spectra of chemically-prepared, polycrystalline silver-iodide 
as (a) dry powder and (b) aqueous suspension in a rotating cell. Excitation wavelength 

799.3 nm. 
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photochemistty which included excitation with low energy photons (799 nm) and the use 

of a rotating cell containing the Agl crystals suspended in water. The Raman spectrum 

obtained under these conditions is shown in Figure 7b. A new band at 83 cm"' was 

present in the spectrum together with a weaker band around 105 cm"'. When the rotation 

of the cell was stopped, the latter band grew in intensity with time whereas the former 

decreased. 

DISCUSSION 

Bromide- and iodide-modified silver colloids and CMFs are shown to reduce 

cytochrome c at their surface. Neither the Ag particles alone nor a solution of these halide 

salts reduces the Cyt c. Therefore, it can be concluded that the potential of the particles is 

shifted to values sufficient for Cyt c reduction as a result of the halide-metal interaction. 

Because silver-halides are known to be photosensitive^^, the effect of light must be 

considered. Based on the following experimental observations, it appears that the role of 

light is minimal in the reduction process. First, we observed reduction of Cyt c at the low 

light intensities typical for UV-Vis measurements. Second, no change in the amount of 

reduced Cyt c was observed after prolonged exposure to intense laser light. However, we 

caimot rule out entirely the possibility that this process is extremely photosensitive and is 

already completed under low light intensities. 

A shift in the potential of the particles upon adsorption of the halide ions is a resuh 

of charge transfer from the adsorbate to the metal. The extent of the charge transfer is 

dependent upon the nature of the silver-halide bond, or in other words, the degree of ionic 
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or covalent character.^^ The nature of the silver-halide bond can be probed by Raman 

spectroscopy. Adsorption of iodide from KI, I2 and I3" on silver resulted in nearly identical 

features at 112 cm"' in the SERS spectra. This indicates that iodide, independent of its 

source, forms the same surface-bound species and 112 cm"' represents the metal-iodide 

(Ags-I) vibration. In contrast, the Raman spectrum of chemically prepared, polycrystalline 

Agl contains two bands one of which is near 83 cm"', probable due to a lattice vibration. 

A second band around 105 cm"' results from photodecomposition of Agl to metallic silver 

and iodine which ftirther reacts to form Ags-I. This reaction is similar to the reduction of 

silver-halides in the photographic process. Two similar bands at 85 cm"' and 107 cm'' 

were previously observed in the Raman spectrum of a wurtzite-type Agl single crystal.-^ 

Both bands were assigned to phonon modes, but no photochemistry was discussed in this 

study. Based on the present work, most likely there are two overlapping bands in the 

region 105-112 cm"' in the Raman spectrum of crystalline Agl: one at a lower frequency 

due to phonon vibrations and a second at a somewhat higher frequency due to Agj-I 

formed as a result of photodecomposition. 

The frequency of the metal-halide vibration was used by Gao and Weaver^^ to 

estimate the force constant for the chemical bond. In combined Raman-electrochemical 

measurements, the metal-iodide vibrational frequency was determined as a function of the 

surface charge on gold and silver electrodes.25 The authors concluded that the Aus-I bond 

is totally covalent, whereas the Ags-I is less covalent. The latter conclusion is based on 

the smaller force constant, as well as the observation that the vibrational frequency of Ags-

I decreased as the electrode potential was made more negative. This result is expected if 
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the Ags-I bond has some degree of ionic character. On the other hand, ultrahigh vacuum 

studies on halide-modified Ag(l 11) employing x-ray photoelectron spectroscopy indicate 

that iodide exists in a nearly zero-valent state upon adsorption to the metal.29.30 Wertheim 

and coworkers-^ estimated an upper limit for the charge on iodide to be 0.035 electron. 

Based on these results, it is reasonable to assume that nearly one electron is donated to the 

colloidal Ag particle per T adsorbed. 

In the case of Br", Cyt c reduction was observed at concentrations ca. 40 times 

higher than those for F. This difference in concentration is attributed to two reasons. 

First, the Ags-Br bond is more ionic than that of Ags-I which means that less charge is 

transferred to the metal.25 Second, the lower affinity of Br" toward the Ag surface relative 

to F requires a higher concentration to achieve an equal surface coverage.^^'^z Chloride 

and fluoride anions weakly associate with the metal surface forming predominantly ionic 

species with Ag and even at saturation coverage caimot charge the particles sufficiently to 

reduce Cyt c. 

In experiments involving a colloidal metal film, it is possible to calculate the 

equilibrium potential of the system using the Nemst equation and the reduction potential 

of Cyt c. The latter is assumed to be identical to the value for Cyt c in solution (+0.02 V 

vs. SCE33) xhis assumption is based on the observation that the protein maintains its 

native conformational state on the surface of the halide-modified Ag colloid, as supported 

by SERRS spectra in which bands at 1502 cm"' and 1493 cm'' in Figure 2 are 

characteristic of the native, six-coordinated low-spin state of oxidized and reduced heme, 

respectively^^. For the different stoichiometric ratios of reduced and oxidized Cyt c 
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(Table I), the equilibrium potential varied between +0.031 V and +0.054 V. In these 

experiments, monolayer coverage by F was insured by comparing the amount of adsorbed 

iodide, measured experimentally, to that calculated assuming V3 x Vs packing on the Ag 

surface.3®-^'^ The variations in the equilibrium potential are explained by differences in the 

initial potential of the silver particles which depends strongly on various factors such as 

the particle diameter (size distribution function), charging/discharging processes to the 

solution during CMF storage, local ion environment, etc. The discharging of iodide-

modified Ag colloid is demonstrated in the following experiment. Cytochrome c was 

added at different times after the Ag colloid was modified with iodide. Because the 

solutions were not degassed, dissolved oxygen removed charge from the particles and, as a 

result, the efficiency of the iodide-modified Ag particles toward Cyt c reduction was 

decreased. Figure 8. This effect was not observed when all solutions were purged with 

nitrogen. 

An important issue regarding the mechanism of Cyt c reduction on the halide-

modified Ag particles is whether the electron donated by the halide ion is localized near 

the Ags-I complex or is delocalized in a thin layer near the surface. If the charge is 

localized, the reduction of Cyt c would be govemed by the potential of the Ag/AgI couple, 

-0.394 V vs. SCE35, which is sufBcient to reduce cytochrome c. In this case, a 

stoichiometry of 1:1 is expected for T/ Cyt c, assuming that all added F is adsorbed on the 

Ag particles. It is not clear, however, how the initial charge on the particles will affect 

their reducing capabilities. On the other hand, if the charge is delocalized, each F donates 

one electron to the Ag particle, thereby raising the potential of the particle as a whole. The 
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Figure 8: SERRS spectra of Cyt c (7.0 ^M) added at different times after the Ag colloid 
was modified with iodide: (a) 0.5 min., (b) 5.5 min., (c) 10.5 min., (d) 15.5 min. and (d) 
20.5 min. Excitation wavelength 514.5 nm. 
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particles store charge and flmction as "microelectrodes."^-^ In this scenario, the potential 

of the particle depends on the its capacitance and the amount of charge donated, as well as 

its starting potential; Cyt c reduction is expected to exhibit threshold behavior with 

increasing surface coverage by F. Li our experiments, preadsorption of a certain amount 

off on the Ag surface was always required before any Cyt c reduction was observed. 

(Note that the reduction of Cyt c was monitored by SERRS which provides extreme 

sensitivity for monitoring the reduced species at the surface.) A stoichiometry of 1:1 was 

never achieved even though stringent precautions were taken to eliminate oxygen and 

other oxidizing impurities. These results support the model in which the potential of the 

Ag particles is gradually built-up by the adsorbed ions to a level sufficient for Cyt c 

reduction. 

Adsorption of iodide on nanosized Ag particles is expected to affect their plasmon 

resonance especially when F donates an electron to the metal. It also should be recognized 

that charging of a conducting metal sphere leads to accumulation of charge mainly in the 

surface layer. In experiments with silver colloids of 70 A mean diameter, Heinglen et al.^ 

observed a dramatic red-shift of nearly 30 nm in the position of the maximum together 

with a decrease in intensity and broadening of the plasmon band upon addition of KI 

sufficient only for monolayer. Further increase in F concentration had no effect on the 

extinction spectrum. The authors explained the red-shift in the plasmon resonance upon F 

adsorption by a decrease in the free electron density in the surface layer. In this model, the 

donated electrons remain bound to the coordinatively-unsaturated Ag surface atoms and, 

as a result, a fraction of the free electron density from the surface layer is "squeezed" into 
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the interior of the particle.^ Assuming that excitation of the plasmon leads to an 

oscillation of the charge distribution in the surface layer of the particle, the authors 

conclude that electron depletion of this layer is manifested in the red-shift of the plasmon 

resonance. 

According to the above, it would appear that the interior electrons of the particle 

do not significantly influence the plasmon resonance. However, when the diameter of the 

particle is much less than the wavelength of visible light (retardation effects are 

neglected), the particle can be described as a cavity for free electron oscillation.^^ This 

means that, even though the plasmon excitation creates only oscillating positive/negative 

caps near the surface, the interior electron density also participates in the collective 

motion. Interior electrons together with boundary conditions at the surface determine the 

electron wave function in the particle as a whole.^"' Changes in the surface layer do not 

strongly affect the plasmon frequency, but will influence its intensity and half-width due to 

changes in the boundary conditions for resonance. These changes occur as a result of 

donation or withdrawal of charge as well as adsorption of highly polarizable species such 

as iodide. Our experiments with colloidal metal fihns, where aggregation of the particles 

is believed to be insignificant, support this model. Addition off up to twenty times 

greater than that required for monolayer coverage resulted only in a decrease in intensity 

by ca. 10% and broadening of the plasmon resonance (Figure 5); however, practically no 

red-shift was observed. 
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CONCLUSIONS 

Adsorption of iodide and bromide on the surface of silver in a colloidal suspension 

and a colloidal metal fihn causes a charging of the metal particles and a shift in their 

potential to more negative values. At certain surface coverages, the potential reaches a 

value sufficient for the reduction of cytochrome c. In the absence of oxidizing agents, 

charge is stored within the particle for an extended period of time. Upon adsorption to the 

metal surface, each T donates nearly on electron which is delocalized within a thin surface 

layer. Charging of the Ag particles does not affect their plasmon frequency but causes 

damping (a decrease in intensity and broadening) of the plasmon resonance. 

ACKNOWLEDGMENT 

Funding for this research was provided by the National Institutes of Health (GM 35108, 

TMC). The authors gratefully acknowledge this support. Fruitful discussions with 

Professor Katsumi Niki are especially appreciated. 

REFERENCES AND NOTES 

(1)  McLendon,  G.  In Energy Resources Through Photochemistry and Catalysis, 
Gratzel, M., Ed.; Academic Press: New York, 1983, pp 99-122. 

(2) Fendler, J. H. Membrane-Mimetic Approach to Advanced Materials, Advances in 
Polymer Science Series Vol. 113; Springer-Verlag: Berlin, 1994; pp 96-111. 

(3) Mulvaney, P.; Grieser, F.; Meisel, D. In Kinetics and Catalysis in 
Micro heterogeneous Systems, Gratzel, M. and Kalyanasundaram, K., Eds.; 
Surfactant Science Series; Marcel Dekker: New York, 1991; Vol. 38, pp 303-373. 

(4) Henglein, A. In Topics in Current Chemistry, Steckhan, E., Ed.; Springer-Verlag: 
Berlin, 1988; Vol. 143, pp 115-180. 



www.manaraa.com

75 

(5) Miller, D. S.; Bard, A. J.; McLendon, G.; Ferguson, J. J. Am. Chem. Soc. 1981, 
103, 5336. 

(6) McLendon, G.; Miller, D. S.J. Chem. Soc., Chem. Commun. 1980, II, 533. 

(7) Henglein, A. J. Phys. Chem. 1993, 97, 5457. 

(8) Linnert, T.; Mulvaney, P.; Henglein, A. J. Phys. Chem. 1993, 97, 679. 

(9) Henglein, A.; Lilie, J. J. Am. Chem. Soc. 1981,103, 1059. 

(10) Neddersen, J.; Chumanov, G.; Cotton, T. M. Appl. Spectrosc. 1993, 47, 1959. 

(11) Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M. J. Phys. Chem. 1995, 
99, 9466. 

(12) Brautigan, D. L.; Ferguson-Miller, S.; Margoliash, E. Meth. Enzymol. 1978, 53, 
128. 

(13) Awtrey, A. D.; Connick, R. E. J. Am. Chem. Soc. 1951, 73, 1842. 

(14) Goss, C. A.; Charych, D. H.; Majda, M. Anal. Chem. 1991, 63, 85. 

(15) Margoliash, E.; Frohwirt, N. Biochem. J. 1959, 71, 510. 

(16) Spiro, T. G.; Li, X.-Y. In Biological Applications of Raman Spectroscopy, Spiro, 
T. G., Ed.; Wiley: New York, 1988; Vol. HI, pp 1-37. 

(17) Hildebrandt, P.; Stockburger, M. J. Phys. Chem. 1986, 90, 6017. 

(18) Barlow, G. H.; Margoliash, E. J. Biol. Chem. 1966, 241, 1473. 

(19) Margoliash, E.; Barlow, G. H.; Byers, V. Nature 1970,228, 723. 

(20) Gopal, D.; Wilson, G. S.; Earl, R. A.; Cusanovich, M. A. J. Biol. Chem. 1988,263, 
11652. 

(21) Heimenz, P. C. Principles of Colloid and Surface Chemistry, 2nd ed.; Marcel 
Dekker: New York, 1986. 

(22) Marchetti, A. P.; Eachus, R. S. In Advances in Photochemistry, Volman, D., 
Hammond, G. and Neckers, D., Eds.; Wiley: New York, 1992; Vol. 17, pp 145-
216. 



www.manaraa.com

16 

(23) Bom, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon: Oxford. 1980; pp 633-
664. 

(24) Garrell, R. L.; Shaw, K. D.; Krimm, S. J. Chem. Phys. 1981, 75, 4155. 

(25) Gao, P.; Weaver, M. J. J. Phys. Chem. 1986, 90,4057. 

(26) Wetzel, H.; Gerischer, H.; Pettinger, B. Chem. Phys. Lett. 1981, 75, 392. 

(27) Holt, R. E.; Cotton, T. M. J. Am. Chem. Soc. 1987,109, 1841. 

(28) Bottger, G. L.; Damsgard, C. V. J. Chem. Phys. 1972,57, 1215. 

(29) Wertheiin, G. K.; DiCenzo, S. B.; Buchanan, D. N. E. Phys. Rev. B 1982,25, 
3020. 

(30) Berry, G. M.; Bothwell, M. E.; Bravo, B. G.; Cali, G. J.; Harris, J. E.; Mebrahtu, 
T.; Michelhaugh, S. L.; Rodriguez, J. F.; Soriaga, M. P. Langmuir 1989, i, 707. 

(31) Garrell, R. L.; Shaw, K. D.; Krimm, S. Surf. Sci. 1983,124, 613. 

(32) Weaver, M. J.; Hupp, J. T.; Barz, F.; Gordon, J. G., H; Philpott, M. R. J. 
Electroanal. Chem. 1984,160, 321. 

(33) Hildebrandt, P.; Stockburger, M. Biochemistry 1989, 28, 6710. 

(34) Salaita, G. N.; Lu, F.; Laguren-Davidson, L.; Hubbard, A. T. J. Electroanal. Chem. 
1987,22P, 1. 

(35) Weast, R. C. CRC Handbook of Chemistry and Physics-, 62nd ed.; Weast, R. C., 
Ed.; CRC Press: Boca Raton, 1981, pp D136-137. 

(36) Kerker, M. Acc. Chem. Res. 1984, 77,271. 

(37) Kreibig, U.; Quinten, M. In Clusters of Atoms and Molecules II, Haberland, H., 
Ed.; Springer Series in Chemical Physics Vol. 56; Springer-Verlag: Berlin, 1994, 
pp 321-359. 



www.manaraa.com

77 

CHAPTER 4. REDUCTIVE PROPERTIES OF IODIDE-MODIFIED 
SILVER NANOPARTICLES 

A paper accepted by the Journal of Electroanalytical Chemistry^ 

Morgan S. Sibbald, George Chumanov, Therese M. Cotton 

ABSTRACT 

Reduction of cytochrome c and 2,6-dichloroindophenol was observed on iodide-

modified colloidal silver films. Two different processes were identified: reduction at sub-

to monolayer coverages by F on the Ag surface and reduction in the presence of free 

iodide in solution. In the former, only about 5% of the electron acceptor molecules 

relative to surface-bound F underwent reduction, whereas in the latter a 1:1 stoichiometry 

was observed. Emission around 425 nm indicated the formation of molecular silver 

iodide. It was concluded that, in the absence of an electron acceptor, binding of iodide to 

the silver surface forms a complex which is different from molecular Agl. The electron 

derived from partial charge transfer between F and the Ag metal resides near the silver-

iodide complex and does not contribute to the "free" electron density of the silver 

nanoparticles. 

1. INTRODUCTION 

At bare metal surfaces, many redox-active proteins exhibit irreversible electron 

transfer reactions and significant deviation from their native redox potential. This 

' Reprinted with permission from J. Electroanal. Chem. 1997, in press (ref. JEC 5131). 
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behavior has been attributed to structural alterations of the protein following its adsorption 

on the surface. Modification of metal surfaces with small organic molecules or inorganic 

anions prevents direct interaction of proteins with the metal, thereby preserving their 

structure. The modifiers are not electroactive in the potential range where protein 

reduction occurs and, therefore, do not fionction as mediators of electron transfer. For 

example, adsorption of 4,4'-bipyridine, 4-mercapto-pyridine or iodide result in nearly 

reversible electron transfer kinetics for cytochrome c at gold and silver electrodes [1-3]. 

At the same time, the reduction potential on the bare metals was shifted about 440 mV 

more negative than that in the solution. Surface-enhanced resonance Raman scattering 

(SERRS) was employed to monitor the structure of adsorbed cytochrome c. Bands 

sensitive to the spin state and coordination number of the heme prosthetic group provided 

direct evidence for the native protein structure at the modified surface [4]. 

An important question to be addressed is how modifiers influence interfacial 

properties of metals, in particular the open circuit potential and the electron tvmneling 

characteristics. Henglein and coworkers studied the adsorption of CN', SH", CeHsS' and 

PH3 on colloidal silver and their effect on the reductive properties of the metal particles [5, 

6]. It was found that in the absence of an electron acceptor, a potential difference was 

generated between the particles and the solution resulting from charge transfer from the 

adsorbed species to the metal. This potential was used to reduce methyl viologen dication 

or protons from water at the expense of silver oxidation to silver ions. Porter et al. 

measured a shift of nearly 700 mV in the open circuit potential of a gold electrode upon 

adsorption of butanethiol and butyl sulfide [7]. The authors also noted that the open 
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circuit potential was extremely sensitive to fortuitous electron acceptors, especially 

oxygen. Berry et al. discussed changes in the tunneling current when iodide is adsorbed 

onto an atomically smooth Au(l 11) surface resulting from the higher density of states at 

sites where iodide atoms are located [8]. 

Halide adsorption on the surface of silver nanoparticles and its effect on plasmon 

resonances and cytochrome c reduction was recently studied by Sibbald and coworkers 

[9]. Formation of an iodide monolayer on the Ag particles was shown to cause a decrease 

in intensity and broadening of the plasmon resonance. No shift in the resonance frequency 

was observed for this case, in contrast to the dramatic shift reported by Henglein et al. in 

similar experiments [5]. It was suggested that reduction of cytochrome c resulted from a 

charging of the metal particles and a shift in their potential to more negative values [9]. In 

the current study, quantitative measurements of the reductive properties of iodide-

modified Ag nanoparticles arranged in two-dimensional arrays were undertaken in order to 

establish the molecular details of the reduction mechanism. Both cytochrome c and a 

redox active dye were used as electron acceptors in this work. 

2. EXPERIMENTAL METHODS 

2.1. Reagents 

Cytochrome c (Horse Heart, Type VI, Sigma Chemical), 2,6-dichloro-indophenol-

sodium salt (Fisher) and all other reagent grade chemicals were used as received. Water 

was purified using a Millipore Milli-Q system and had a nominal resistivity of 18 MH cm. 

All solutions were prepared in phosphate buffered pH 7.12 solution. The buffer contained 
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0.100 M potassium phosphate monobasic (EM Science) adjusted to pH 7.12 using 6 M 

NaOH. Solutions were purged with high-purity nitrogen (99.995%) using copper transfer 

lines for at least 15 min prior to measurements. All manipulations with samples were 

performed under an argon (99.996%) atmosphere. 

2.2. Colloidal Metal Film (CMF) Preparation 

The monolayer of Ag nanoparticles was prepared on a glass substrate modified 

with (3-mercaptopropyl)trimethoxysilane [10]. Upon immersing the substrates into Ag 

suspensions, the particles were spontaneously adsorbed due to strong covalent bonding 

between silver and the thiol headgroup of the modifier, producing two-dimensional semi-

regular arrays. The mean particle diameter was determined by transmission electron 

microscopy to be ca. 100 nm. CMFs prepared in this maimer were analyzed by scanning 

electron microscopy and appeared to be uniform across the entire substrate. 

2.3. Electronic Absorption Spectroscopy 

UVA^is spectra were recorded using a Perkin-EImer Lambda 6 dual-beam 

spectrophotometer with 2 nm spectral resolution. Because the cytochrome c absorption 

spectra typically contained contributions from both oxidized and reduced states of the 

heme, a linear combination of equations was solved utilizing Beer's Law and the reported 

molar absorptivities for each form of the protein at the wavelengths 528 and 550 nm in 

order to determine the concentration of each constituent [11]. The molar absorptivity of 

2,6-dichloroindophenol in the oxidized state was reported by Heineman and coworkers to 

be 20,600 M"' cm"' at 600 nm [12]. 
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Extinction spectra of colloidal metal films were obtained fi-om the films immersed 

in water using a bare glass substrate as a reference. 

2.4. Raman Spectroscopy 

Raman scattering, surface-enhanced resonance Raman scattering and emission 

spectra were excited using 413.1 run radiation firom a Coherent Iimova 100 Krypton laser. 

Laser power at the sample was less than 10 mW. Scattered light was collected by a Cl .2 

camera lens in a back-scattering geometry and analyzed by a Spex 1877 Triplemate 

spectrograph equipped with a Princeton Instruments LN 1100 x 330 CCD detector. 

Spectral resolution was 9 cm"'. The spectra were calibrated using indene. 

2.5. Electrochemical Measurements 

Voltammetry experiments were performed using a BAS 100 electrochemical 

analyzer (Bioanalyticai Systems) and a conventional three-electrode cell. The working 

electrode was a silver film prepared by vacuum deposition on a glass substrate. The 

exposed area was about 25 mm^. Platinum mesh was used as the auxiliary electrode. A 

saturated calomel electrode (SCE) served as the reference electrode. The working 

electrode was sequentially polished to a mirror-like surface with 0.3 and 0.05 jim alumina 

+ water slurries and sonicated in water prior to use. The electrolyte contained 0.50 M 

sodium sulfate and 0.10 M phosphate buffer, pH 7.12. All potentials described in the 

present work are reported with respect to the saturated calomel electrode. 

3. RESULTS AND DISCUSSION 

The evolution of the cytochrome c absorption spectrum as a function of increasing 

iodide concentration in the presence of a colloidal silver film is shown in Fig. 1. Colloidal 
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Figure 1. Absorption spectra of cytochrome c (45.40 |iM) for different concentrations of 
KI inthe presence of a colloidal silver film: (a) 0, (b) 3.0, (c) 12.1, (d) 21.2, and (e), (f) 
48.5 ^iM. Spectra (a), (b), (c), and (e) were recorded at 15 min after mixing. Spectra in (d) 
were recorded at 15, 30, 45, and 60 min after mixing. Spectrum (f) was recorded at 18 
hours after mixing. 
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films were used as a silver substrate because plasmon resonances of nanosized particles, 

which are sensitive to surface modification and redox reactions involving the Ag, can be 

easily monitored by absorption spectroscopy [9]. In addition, high concentrations of 

phosphate buffer did not cause aggregation of the silver particles in CMFs, in contrast to 

an aqueous colloidal suspension. The experiment for cyt c reduction was performed as 

follows. A colloidal film was immersed in 1.2 mL of 30 potassium iodide solution 

(pH 7.12) for 15 min to saturate the surface with iodide. Monolayer coverage in this case 

was insured by comparing the adsorbed amount off, measured firom decreased absorption 

at 226 nm assigned to an iodide charge-transfer-to-solvent band [13], with the calculated 

surface area of the Ag. For all films used in this study, monolayer coverage was 

equivalent to 8.3 ± 0.4 [iM of iodide and was consistent with V3 x V3 packing off on the 

silver surface [8, 14], The fihn was then rinsed to remove non-bound T, and immersed in 

1.2 mL of a known concentration of cyt c in the oxidized state. At this point, less than 0.5 

foM of reduced cyt c was observed, which was independent of the initial cyt c 

concentration. Addition of free iodide to the solution resulted in a significant increase in 

reduced cyt c (Fig. 1). A slow time-dependence was observed for this reduction process. 

When the solution was stirred for several hours in an oxygen-free atmosphere at a given F 

concentration, more reduced form appeared. After 18 h, the amount of reduced cyt c was 

nearly equivalent to the amount of iodide added, including F which was required for 

monolayer coverage of the metal surface (Fig. If). 

After the metal surface was saturated with bound iodide, reduction of cytochrome 

appeared to be dependent on the formal cyt c concentration. In other words, more absolute 
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amounts of reduced cyt c were observed for lower initial concentrations, even though the 

same iodide concentration was present and the system was incubated for the same period 

of time. This behavior is illustrated in Fig. 2. The concentration and time dependence of 

the reduction process can be explained by a direct interaction between iodide and 

cytochrome. It is known that cyt c interacts electrostatically with various anions, 

including halides [15-17]. Therefore, competition exists between the Ag surface and 

cytochrome for F binding. When iodide is added to the solution, some ions are bound to 

cytochrome while others immediately interact with Ag, causing reduction of the protein. 

cytc + F + K"^ < > cytc-F-K"^ (1) 

Ag + F + K" Ag-F-K" (2) 

Because the covalent bond of iodide to silver is stronger than the electrostatic interaction 

between iodide and cyt c, i.e. K2 » AT/, the equilibrium will be shifted over time towards 

all iodide "pulled away" from cytochrome. As a result, after 18 h the ratio of reduced cyt 

c and added iodide approached one-to-one (Fig. 1). 

hiteraction of cytochrome with F requires long times for the system to reach 

equilibrium and interferes with quantitative measurements of the reductive properties of 

the Ag surface. In addition, cytochrome itself adsorbs on the silver surface, which has 

been shown to affect its standard reduction potential [18]. To overcome these 

complications, 2,6-dichloroindophenol (DCIP) dye was chosen as a redox indicator for 

studying the reductive properties of the iodide-modified Ag particles. This dye undergoes 

a reversible two-electron reduction which is accompanied by strong changes in the 
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Figure 2. Dependence of reduced cytochrome c on the formal concentration of KI in the 
presence of a colloidal silver film for different concentrations of cytochrome: (o) - 16.4 
jiM; (+) - 51.2 - 45.4 ^M. 
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absorption spectrum" [12]. In the oxidized state, a broad band is observed around 600 nm. 

When DCIP becomes reduced, the chromophoric properties of this molecule are destroyed 

and visible absorption disappears. The cyclic voltammetric current-potential curves 

exhibited only one pair of cathodic/anodic waves revealing a midpoint potential of +0.021 

V (Fig. 3). Although this is a two-electron reduction process, the potentials for each single 

electron transfer were indistinguishable even at scan rates up to 1 V s"'. Because the 

reduction potential of DCIP is pH sensitive, all measurements were performed at pH 7.12 

in phosphate buffer solution [19]. 

-0.400 

E/ V (vs. SCE) 

Figure 3. Cyclic voitammograms of 0.26 mM 2,6-dichloroindophenol at a freshly 
polished Ag electrode in 0.10 M phosphate buffer solution (pH 7.12) containing 0.50 M 
Na2S04. Scan rates: (a) 0.010, (b) 0.050, and (c) 0.100 V/s; Initial potential, +0.400 V. 
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A suspension of colloidal silver was utilized to test for interaction between DCIP 

and a Ag surface because such interactions might perturb the dye's midpoint potential. 

The frequency of the plasmon resonance in nanosized particles is directly influenced by 

molecules adsorbed on the surface as well as aggregation induced by this adsorption. 

Because addition of up to 30 |iM of the dye to the Ag colloid did not cause any discernible 

changes in the extinction spectrum, the conclusion was made that DCIP does not adsorb 

on the silver surface. In addition, no SERS spectrum was observed even after intentional 

aggregation of the colloid in the presence of dye. 

Ions of the phosphate buffer also adsorb on the silver surface, thereby interfering 

with DCIP adsorption and/or with the overall reduction phenomenon. SERS spectra of 

phosphate from the phosphate buffer solution in silver colloid displayed a downshift of the 

P-0 stretching band from 990 cm"' to 912 cm"' [20], indicating a direct interaction 

between the ion and the metal surface. The addition of iodide to Ag colloid containing 

adsorbed phosphate resulted in loss of the 912 cm"' band from the SERS spectra, 

consistent with displacement of the weakly bound phosphate from the metal surface by 

iodide. The conclusion is made that the presence of phosphate buffer does not 

significantly interfere with the reduction process. Also, no difference was observed for 

cytochrome c reduction on iodide-modified colloidal films in the presence or absence of 

phosphate buffer. 

Reduction of DCIP on colloidal silver films was performed according to the 

protocol described above for cyt c. Absorption spectra were recorded in differential mode, 

in which the sample and reference cells contained the same formal concentrations of dye. 
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As the concentration of iodide was increased, bleaching was observed in the visible and 

near-uv spectral regions corresponding to disappearance of the oxidized form, as shown in 

Fig. 4. The new band around 225 nm (s a 26,700 M"' cm'") is assigned to the reduced 

form of DCIP. The reaction was found to be extremely oxygen sensitive. Both reduced 

DCIP and the modified silver particles can be oxidized by traces of oxygen (and possibly 

other electron acceptors), resulting in a lower yield for the reaction. Precautions were 

made to minimize these factors. It is important to emphasize that no time evolution of this 

reduction process was observed, unlike that found in the experiments involving 

cytochrome. The absolute amount of reduced dye was also independent of its formal 

concentration and was directly proportional to iodide concentration. 

In Fig. 5, the amount of reduced DCBP is plotted as a fimction of iodide 

concentration for different concentrations of dye. Reduction was highly reproducible and, 

as can be seen in the Fig., independent of DCP concentration. This reaction is limited by 

iodide, which means that the F concentration determines the absolute amount of dye 

reduced. The stoichiometry of F to reduced DCEP was established fi-om the slope of the 

line in Fig. 5 to be 1.87 to 1. The ratio was expected to be 2 to 1 because reduction of the 

dye is a two-electron process. This discrepancy could arise if not all DCIP molecules 

undergo two-electron reduction; the one-electron reduced semiquinoid intermediate could 

be formed [21]. However, no obvious indication of a third component was found in the 

UVA^is spectra. 

As can be seen, the nearly 2 to 1 reaction stoichiometry was observed only after 

saturation of the Ag surface by iodide (Fig. 5). The amount of F required for saturation 
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Figure 4. Absorption difference spectra of 2,6-dichloroindophenoI (91.2 in the 
presence of a colloidal silver film as a function of KI concentration. The arrows indicate 
the direction of changes with increasing concentrations of iodide. 
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Figure 5. Dependence of reduced 2,6-dichIoroindophenol on the formal concentration of 
KI in the presence of a colloidal silver film for different concentrations of dye: (o) - 37.0 

- 91.2 nM. 
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corresponds to monolayer coverage and is represented by the intercept of the plot with the 

x-axis. At this coverage, ca. 0.25 |xM of reduced DCIP was observed even though the 

films were thoroughly rinsed to remove traces of non-bound iodide, hi contrast, 

monolayer coverage on a continuous silver surface (e.g. silver electrode) normalized in 

surface area to the colloidal Ag films did not result in observable amounts of DCIP or 

cytochrome reduction. The latter was established by both UVA^is and SERS 

measurements. Reduction at sub- to monolayer coverages is a unique property of the 

colloidal metal films composed of isolated Ag nanosized particles. Therefore, the 

reduction can be arbitrarily divided into two processes: reduction at sub- to monolayer 

coverages when all added iodide is adsorbed on the metal surface and reduction in the 

presence of free iodide in solution. 

Reduction of cytochrome c and DCIP dye at sub- to monolayer iodide coverages 

on colloidal silver films can be assumed to result from a shift in the particles' potential to 

more negative values upon iodide adsorption. Upon adsorption, T is expected to donate 

nearly one electron into the Ag particle [9]. This electron, however, does not contribute to 

the "free" electrons of the metal; instead, it remains mostly bound to the Ag surface-I 

complex. Otherwise, the potential of the metal particle would be shifted to unrealistic 

negative values which can be seen from the following consideration. 

The potential of a spherical capacitor can be calculated from the amount of stored 

charge and its capacitance. Weaver et al. measured a capacitance of ca. 15 cm"^ for 

polycrystalline silver in elecfrolyte containing KI at potentials positive of the potential of 

zero charge (ca. - 0.95 V), where the capacitance is relatively independent of the applied 
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potential [22,23]. Valette et al. measured the potential dependence of the capacitance for 

different crystal faces of silver around the potential of zero charge in iodide solution [24]. 

In the potential region between -0.7 V and -1.5 V, the capacitance for all crystal faces 

increased to maxima of up to 360 |iF cm'^ and then rapidly decreased to a plateau around 

30 fiF cm'^. For the present calculation, the capacitance in the potential regions positive of 

-0.7 V and negative of -1.5 V was assumed to be 20 jiF cm'^, whereas in the region 

between -0.7 V and -1.5 V it was approximated by an average value of 200 joF cm'". The 

amount of charge donated by iodide to one Ag particle of 1000 A diameter was calculated 

to be ca. 5.8 x 10^ electrons. This value was determined from the total amount of 

adsorbed iodide, which was measured spectroscopically as described above, normalized to 

the number of silver particles in the colloidal Ag film, which was obtained from electron 

micrographs. 

The calculation yields an unrealistic value of -7.5 V for the potential of the iodide-

modified Ag particle. Actually, the particle will not be charged to such an extent; the 

evolution of hydrogen around the potential -1.1 V would limit the charging at sub-

monolayer coverages and further build up of the monolayer would continue to produce 

hydrogen gas. No gas production was observed as the monolayer of iodide was formed on 

the colloidal films nor during prolonged exposure of the fihns to millimolar KI solutions. 

A second limiting factor for charging is the potential of iodide desorption from the Ag 

surface which is ca. -0.9 V [25]. This potential would also be reached at small fractions of 

monolayer coverage which would prevent further monolayer formation. From 

experiments it is known that a full monolayer of iodide on the Ag particles is formed. 
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Another concern regarding the concept of charging of the Ag nanoparticles by 

adsorbed iodide is the continuous discharging which can take place by traces of fortuitous 

electron acceptors, in particular oxygen. Oxygen is known to convert iodide in the 

presence of silver metal to molecular silver iodide. In the case of colloidal silver films, 

this reaction can be monitored by changes in the plasmon resonance of the nanoparticles 

as the metal is converted to Agl (described below). Precautions taken in this work were 

sufficient to minimize oxygen such that no significant changes in the plasmon resonance 

were observed after immersing a silver colloidal fihn overnight in millimolar KI solution. 

The above considerations lead to the conclusion that the electron which is 

delivered upon 1" adsorption is mainly localized near the Ag surface-1 complex. The 

negative charge which builds up in the surface layer could be compensated by cation 

coadsorption in the irmer Helmholtz layer or by the inherent positive charge of the surface 

silver atoms. Cation coadsorption with iodide anions in a 1:1 stoichiometry on Au( 110) 

was recently determined by in situ surface x-ray scattering [26]. The potential due to 

adsorbed Y drops very rapidly across the coadsorbed cation layer and is not accessible to 

electron acceptors from the bulk solution. However, the fact that small reduction of the 

dye and cyt c is observed at monolayer Y coverages strongly suggests that the potential of 

the system has been changed after iodide adsorption. Two reasons for the change in the 

effective potential can be suggested. First, if the adsorption of iodide on the Ag surfaces 

causes a change in the electron density in terms of the number of electrons N per unit 

volume V, then the Fermi energy i^of the electrons will also be affected according to the 

equation. 
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Ef = — 
^ 2m 

(4) 

altering the electrochemical potential of the particle [27]. Second, adsorption of iodide 

and its cation can reduce the barrier for electron tunneling to the acceptor. Neumarm et al. 

reported that the work fimction on iodide-modified Au(lOO) at 300 K was up to 10% 

lower relative to the unmodified gold surface due to adsorbate-induced surface 

reorganization [28]. Even though reducing the barrier does not directly affect the potential 

of the particle, it will increase the electron transfer rate for a spontaneous reaction 

resuhing in an increased amount of reduced species. 

For reduction of cyt c and the dye in the presence of non-bound iodide in solution, 

it is conceivable that the potential of the system is govemed by the silver/silver iodide 

couple. This means that the system reaches a potential at equilibrium which is determined 

by the Y concentration and can be calculated from the Nemst equation. When the 

reduction reaction occurs, this potential changes in response to the decreasing 

concentration of iodide, establishing a new equilibrium potential which can be calculated 

using the Nemst equation and the ratio of reduced to oxidized dye. Because the potential 

of the Ag/AgI couple (-0.396 V at unit activity) is much more negative than the midpoint 

potential of DCIP (+0.021 V), the reaction appeared to "consume" all available iodide. 

Strictly speaking, a small amount of iodide could still remain in solution, but quantitation 

is limited by the detection limit in our UVA^is measurements, 5 x 10"^ M for iodide. The 

concentration of F in solution at equilibrium was calculated to be 5 x 10'^ M for a few 
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percent of reduced dye, whereas this value was ca. 6 x 10"^ M for nearly one hundred 

percent reduction. 

There are, however, two major concerns in applying the Nemst equation for 

determining the potentials of this reaction. First, the potential of the silver/silver iodide 

couple requires a certain amount of molecular silver iodide adsorbed on the silver metal 

and free Y in solution. As will be discussed below, in the absence of an electron acceptor, 

no molecular silver iodide is formed on the silver surface. This factor makes the reported 

value of -0.396 V for the Ag/AgI couple inappropriate for determining the initial potential 

of the iodide-modified silver surface. Second, the Nemst equation is correctly applied 

under equilibrium conditions for a reversible reaction. This implies that the reduced DCIP 

can be reoxidized by Agl, producing Ag° and Y in solution. Because both the dissociation 

constant of Agl in water (ca. 10"'^) and its solubility as a molecular species (ca. 10"^ M) 

are very low [29], silver iodide will exist as a precipitate and the formation of Ag° and I' 

will be kinetically slow if not forbidden. 

Adsorption of iodide on the silver surface resulted in the formation of a complex 

which is different from molecular Agl. This complex can be converted to Agl by a 

suitable electron acceptor in the presence of non-bound Y in solution. The reverse reaction 

can be achieved by irradiating Agl with visible or ultraviolet light at room temperature; 

photodecomposition occurs which yields a silver cluster with a layer of adsorbed iodine, 

as in the photographic process. Formation of the complex appeared to be independent of 

the iodine source, i.e. whether T, Yi or I3", is added to the silver metal. In previous 

experiments, it was determined by Raman spectroscopy that the vibrational frequency of 
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surface-bound iodide, 112 cm"', is different from the vibrational signature of bulk Agl, 

105 cm"' and 83 cm"' [9], The Raman spectrum of bulk Agl was obtained in a rotating 

cell with near-infrared excitation to minimize photodecomposition. 

The reduction process on the iodide-modified silver surface in the presence of I" in 

solution can be followed by an emission near 425 nm upon 413.1 nm excitation. This 

emission is characteristic of exciton recombination in Agl [30, 31]. A series of emission 

spectra of Ag colloid in the presence and absence of cytochrome c and iodide are shown in 

Fig. 6. The spectra were obtained at 77 K in order to minimize photodecomposition 

effects. A strong SERRS spectrum characteristic of the native-oxidized cyt c was 

observed on Ag colloid in the absence off (Fig. 6a) [9]. Iodide itself on Ag colloid 

exhibits weak emission at 426 nm, the intensity of which is comparable to the SERRS 

spectrum (Fig. 6b). Upon addition of cyt c to the iodide-modified Ag colloid in the 

presence of F in solution, an intense band appeared around 427 nm. Its intensity was 

typically ca. 20 times higher than that in the absence of cytochrome, clearly indicating the 

formation of molecular Agl (Fig. 6c). The weak emission which was observed in the 

absence of cyt c is attributed to oxidation of the iodide-modified Ag surface due to 

fortuitous electron acceptors, most likely oxygen. It is necessary to emphasize that no 

emission was observed at monolayer coverages of the silver surface by iodide in the 

presence of electron acceptors. Oxidation of the surface-bound silver-iodide complex on 

colloidal films causes etching of the Ag nanoparticles which results in a decrease in 

intensity and shift to the blue spectral region of the plasmon resonance peak (Fig. 7). The 

sloping background in the resultant spectrum in Fig. 7 is due to scattering by insoluble Agl 

particles. 
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Figure 6. SERRS spectrum of cytochrome c (8 nM) in Ag colloid (a), and emission 
spectra from iodide-modified Ag colloid in the absence (b) and presence (c) of cytochrome 
at 77 K. Excitation wavelength 413.1 nm. Peaks in SERRS spectrum are labeled in 
relative wavenumbers. 
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Figure 7. Extinction spectra of iodide-modified colloidal silver film before (a) and after 
(b) the reduction of 2,6-dichloroindophenol (91.2 |jM). 
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4. CONCLUSIONS 

Adsorption of iodide on a colloidal silver film causes reduction of cytochrome c 

and 2,6-dichloroindophenol. Reduction of the cytochrome exhibits a complex dynamic 

attributed to a competition between iodide binding to cyt c and to silver. The reduction 

can be arbitrarily divided into two parts: reduction at sub- to monolayer coverages when 

all added iodide is adsorbed on the metal surface and reduction in the presence of free 

iodide in solution. The former process is specific for nanosized silver particles, whereas 

the latter can be observed on the bulk metal surface. Reduction at monolayer coverage 

was rationalized to arise from a shift in the Fermi energy of electrons in the silver particles 

due to a change in the electron density and from a decrease in the barrier for electron 

turmeling. hi the presence of F in solution, the potential of the system is controlled by the 

Ag/AgI couple, and the reduction process appeared to follow a 1:1 stoichiometry. It was 

concluded that upon adsorption of F on the silver surface, the donated electron resides 

near the silver-iodide bond and does not contribute to the "free" electron density of the 

metal. Spectroscopic evidence indicates that iodide bound to the silver surface forms a 

complex which is different from molecular silver iodide. 
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CHAPTER 5. MULTIPLE-OVERTONE RESONANCE RAMAN SCATTERING 
AND RESONANCE FLUORESCENCE FROM IODIDE 

ADSORBED ON SILVER SURFACES 

A paper to be submitted to the Journal of Chemical Physics 

Morgan S. Sibbald, George Chumanov, Therese M. Cotton 

ABSTRACT 

A detailed excitation profile of the resonance emission (Raman and fluorescence) 

from iodide adsorbed on an electrochemically roughened Ag surface was obtained in the 

spectral range from 409 to 433 nm. The excitation wavelength was tuned in small steps 

(ca. 0.25 nm) resuhing in a total of 77 spectra. At the temperature 20 K, the most intense 

emission features were from a vibrational progression having a fimdamental band at 

123 cm"' and up to six overtones. This spectrum was previously assigned to the v(I-I) 

stretch of a unique h species adsorbed on small Ag clusters. From the Raman excitation 

profile, a picture of the electronic structure of the surface-adsorbed I2 species was 

developed. Vibronic spacing of ca. 123 cm"' was observed in both the ground and excited 

electronic states, hi addition, significant displacement of the potential energy surfaces 

along the nuclear coordinate was suggested by the ca. 370 cm"' spacing (three quanta) of 

the two resonance maxima in the excitation profile for each band in the progression. 

INTRODUCTION 

The distinction between resonance Raman (RR) scattering and resonance 

fluorescence (RF) has been the subject of numerous theoretical and experimental 

investigations. Many of the early advances concerning the assignment of resonance 
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emission as RR or RF were made in the 1970's. In one study, Holzer and coworkers 

demonstrated both RR and RF from various halogen gases including Cb, Br2,12, and ICI.-^ 

The authors found that the resonance fluorescence consisted of very sharp doublet lines 

having irregular overtone sequences, often with some lines completely missing. The 

resonance Raman features were broadened, relative to the fluorescence, due to allowed 

rotational transitions. Overtones in the Raman progressions exhibited continuous 

broadening and a decrease in intensity with higher vibrational quantum number. Holzer et 

al. noted the unique opportunity in these halogen gases to observe both resonance Raman 

and resonance fluorescence, where the latter is generally much more intense and can 

overwhelm the detection system. 

One of the clearest examples of both RR and RF was shown by Hochstrasser and 

Nyi.5 In this study, the wavelength of the exciting radiation was tuned through single 

vibronic levels of azulene in a naphthalene matrix at 2 Kelvin. Several overtone 

progressions were observed from the different normal vibrational modes depending on the 

excitation wavelength. Progressions assigned to a resonance Raman transition were found 

to always shift in absolute frequency with changes in the incident laser frequency. On the 

other hand, progressions assigned to a resonance fluorescence transition remained at a 

fixed set of frequencies independent of the incident laser frequency. Similar studies were 

recently performed by Zeigler in which the wavelength and pressure dependence of the RR 

and RF features in resonance-excited spectra of gas phase methyl iodide in a methane 

matrix.^ The spectra elegantly showed a broad fluorescence feature which remained fixed 
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in wavelength position while a sharp Raman feature tracked with the excitation 

wavelength. 

Resonance emission was recently reported by Sibbald and coworkers from iodide 

adsorbed on silver surfaces.^ At room temperature the Raman spectrum from the iodide-

modified Ag surface contained a single, broad band around 112 cm"' which has been 

assigned to the metal-iodide stretch.At liquid nitrogen temperature, a vibrational 

progression appeared in the Raman spectrum with a fimdamental band at 123 cm"' and as 

many as six overtones. A model was developed in which at low temperatures, under 

irradiation, a bond is formed between neighboring iodine adatoms producing a new I2 

species adsorbed on a small Ag cluster.® 

In a preliminary excitation profile of the iodide-modified Ag surface, a strong 

dependence on the excitation wavelength was revealed based on the relative intensities of 

the overtone bands at the wavelengths 406.7,413.1, and 415.4 nm.® With excitation of 

the Raman spectrum at 457.9 nm, however, no progression appeared suggesting the 

existence of an electronic resonance transition in this spectral region. The strong Raman 

signal which was observed from no more than one monolayer of iodide adsorbed on the 

Ag surface further suggested a significant contribution from surface-enhanced phenomena, 

i.e. surface-enhanced Raman scattering.^ 

The present work was undertaken in order to determine if the silver surface-

adsorbed I2 species might be an ideal system for theoretical modeling of resonance 

emission processes. It is a simple case of a diatomic species exhibiting only one totally 

symmetric mode in which only diagonal components of the transition polarizability are 
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non-zero. This diatomic molecule has only one resonant excited state which can be 

described by Albrecht's y4-term scattering mechanism.®-It exists at low temperatures at 

which all molecules are in the lowest vibrational level of the ground electronic state and 

interactions with the matrix environment (or "bath") are expected to be minimal. 

EXPERIMENTAL METHODS 

Modification of Silver Surfaces. The iodide-modified silver substrates were 

prepared according to previously reported procedures.^ Briefly, the thin films of silver, 

prepared by vapor depositing ca. 1 |im equivalent mass thickness of Ag on glass 

substrates, were first treated in an RF plasma cleaner for 2 min to produce a hydrophilic 

surface. After rinsing in water, the Ag film was immersed in a vial containing 0.10 M 

Na2S04 (or 0.10 M NaC104) electrolyte solution. The film was then subjected to an 

electrochemical roughening procedure using double-potential step oxidation-reduction 

cycles. A standard three-electrode cell was employed with the silver as working electrode, 

a platinum foil as the auxiliary electrode, and a saturated-calomel electrode (SCE) as the 

reference. All potentials are reported with respect to the SCE reference. Roughening of 

the Ag fihn was performed in the dark and under an argon gas atmosphere. Three cycles 

of the following procedure were performed: the potential was initially stepped to +0.55 V, 

25 mC/cm" of charge was allowed to pass, and then the potential was stepped to -0.60 V 

until the current reached a minimum. The roughened Ag film was rinsed under a stream 

of water and then unmersed into a 1.0 mM KI solution for 2 sec. The iodide-modified 

silver film was rinsed under a stream of water to remove excess KI and was then dried 
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under a stream of nitrogen gas for transfer to the cryostat. Solutions were purged with 

high purity nitrogen gas (99.995%) for at least 20 min prior to experiments. 

Temperature Control. To achieve low temperatures, the iodide-modified silver 

films were mounted in a closed cycle cryogenic system (APD Cryogenics) employing 

gaseous helium as refiigerant. The temperature was selectable between room temperature 

(ca. 295 K) and 8.2 K. Controlled heating was possible through a resistive-type heating 

element mounted on the copper cold finger. Temperatures were measured by a calibrated 

chromel-gold(iron 0.07%) thermocouple and provided ± 0.1 K precision. 

Raman Spectroscopy. Raman scattering and surface-enhanced Raman scattering 

were excited using a tunable dye laser (Coherent CR-599). The dye Stilbene 420 

(Exciton, Inc.) in pure ethylene glycol was optically pumped by an Argon laser (Coherent 

Innova 200) operating in multi-line UV (333-363 nm) mode. The excitation wavelengths 

were determined using a Spex 1877 Triplemate spectrograph calibrated with a low-

pressure argon lamp, providing wavelength accuracy ± 0.02 imi. Laser power at the 

sample was typically 1 mW or less. Scattered light was collected by an CI.5 fused silica 

lens in a 180° backscattering geometry and analyzed by a Spex Triplemate spectrograph 

equipped with a Princeton Instruments back-thinned CCD detector (LN 1100x330). 

Accumulation times varied between 60 s and 400 s. Spectra were calibrated using a low-

pressure argon lamp; fi-equency accuracy was ± 1 cm"'. All spectra are reported with a 

spectral resolution of 0.046 nm (e.g. 2.6 cm"' resolution at 420 nm). The accurate 

measurement of band widths for sharp Raman features was limited by the 1.2 cm"' /pixel 

resolution of the individual CCD detector elements. 
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All data processing including spectral curve fitting was performed using 

procedures in the program Spectra Solve (Lastek Pty. Ltd.). A simplex optimization 

method was employed in the curve fitting routine to determine best-fit parameters. 

RESULTS AND DISCUSSION 

A detailed excitation profile of the resonance emission (Raman and fluorescence) 

fi-om iodide adsorbed on an electrochemically roughened Ag surface (fiarther referred to as 

Ag surface) was obtained in the spectral range firom 409 to 433 imi. The excitation 

wavelength was tuned in small steps (ca. 0.25 rmi) resulting in a total of 77 spectra. As an 

internal standard, a transparent polystyrene plate of 0.8 mm thickness was sandwiched 

with the iodide-modified Ag film and placed in a copper holder in the cryostat. Both the 

progression and the polystyrene spectra were recorded simultaneously. All spectra were 

normalized to the 1002 cm"' band of polystyrene, thereby removing the instrument 

dependence as well as the v'* dependence of the Raman intensity. Special precautions 

were taken to eliminate the dependence of the relative intensities of the progression bands 

and the polystyrene spectrum on the depth of focusing of the collection optics. No 

observable photobleaching of the signal was noted at the low laser powers employed by 

comparing the spectra taken at the beginning and after completion of the excitation series. 

The sample was maintained at 20 Kelvin during the measurements. A temperature 

dependence of the Raman spectrum of iodide on Ag was discussed in the previous study.^ 

Raman spectra of iodide adsorbed on the Ag surface obtained at different 

excitation wavelengths are shown in Figure 1 and Figure 2. These spectra comprise a 
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Figure 1. Resonance Raman spectra of iodide adsorbed on the Ag surface obtained at 
different excitation wavelengths: (a) 424.9 nm, (b) 423.0 nm, (c) 420.6 nm, and 
(d) 418.6 nm. 
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Figure 2. Resonance Raman spectra of iodide adsorbed on the Ag surface obtained at 
different excitation wavelengths: (a) 419.3 nm, (b) 416.6 nm, (c) 414.4 nm, and 
(d) 412.3 nm. 
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vibrational progression with a fundamental (v) at 123 cm"', first overtone (2v) at 246 cm"', 

second overtone (3v) at 369 cm"', etc. Up to six overtones were observed depending on 

resonance excitation conditions. The regular spacing between overtones equal to 123 ± 

0.5 cm"' suggests a high degree of harmonicity. Other bands were also present in the 

emission spectra and can be attributed to resonance and relaxed fluorescence. 

It should be emphasized that the progression was observed on an electrochemically 

roughened Ag surface. Attempts to detect this spectrum on silver prior to electrochemical 

roughening or on silver chemically-etched by nitric acid were unsuccessful. In addition, 

the spectrum was extremely sensitive to the electrochemical roughening procedure. Based 

on these and previous experimental results, a model was developed in which iodide forms 

a complex with small Ag clusters formed during electrochemical roughening and 

associated with the metal surface.^ This Ag cluster-iodine complex exhibits a delocalized 

resonance transition in the blue spectral region. At low temperatures, under irradiation, a 

bond is formed between neighboring iodine adatoms producing a new I2 species adsorbed 

on the Ag cluster. This model is depicted in Figure 3. Various diatomic and polyiodides 

are known to show vibrational progressions. Overtone progressions of v(I-I) have been 

reported in Raman spectra under resonance excitation for I2, h*, I2', and I3' having 

fundamental frequencies at 212, 238, 114, and 113 cm"', respectively.^The fact that 

the vibrational frequency of the new I2 species (123 cm"') is close to that of I2" in solution 

(114 cm"') is consistent with the model of charge transfer from the metal to iodide. At 

temperatures higher than ca. 200K, the new I2 species is dissociated to re-form a 

monoatomic iodide adsorbed on the silver surface. 
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Figure 3. Model depicting the photoinduced formation at low temperatures of a new I2 
species adsorbed on a Ag cluster. The Ag cluster is produced during electrochemical 
roughening of the bulk metal. 
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For the same excitation wavelength, the relative intensities of the overtone bands 

as well as the overall intensity of the spectrum varied considerably at different spots on the 

silver surface (data not shown). However, the vibrational frequencies remained 

unchanged. This behavior can be explained as follows. The delocalized electronic 

transition in the Ag cluster -1 complex can be strongly influenced by the size of the 

cluster, as long as the latter remains within the quantum limits. At the same time, the 

vibrational mode which reflects more the I -1 interaction is expected to be insensitive to 

the cluster size. By changing the irradiated spot on the surface, the clusters with the 

different average size are excited, which is equivalent to probing with different excitation 

wavelengths. The intensity of the progression is known to be very sensitive to the 

excitation wavelength when tuned through the resonance transition, as discussed below. 

Both the absolute intensity of the spectrum as well as the relative intensities of 

different bands varied with excitation wavelength. Only the fundamental band was 

observed with pre-resonance excitation at 435 nm. At 406 nm excitation, the overall weak 

spectrum also contained six overtones, the intensities of which did not change appreciably 

with excitation wavelength.^ The latter is characteristic of continuum resonance Raman 

scattering in which the incident frequency is above the excited state dissociation limit in a 

continuum region.When the incident frequency coincided with vibronic levels of the 

excited state, discrete resonance Raman occurred and the spectral intensity increased 

nearly 50 times relative to pre-resonance and continuimi resonance conditions. 

A three-dimensional contour plot of the resonance emission excitation profile is 

depicted in Figure 4. The intense features in the plot represent the progression-forming 
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Figure 4. Three-dimensional contour plot of the resonance emission excitation profile 
fi-om iodide adsorbed on the Ag surface. Bands labeled PS at 220, 619, and 1002 cm-1 are 
fi-om the polystyrene internal standard to which all spectra were normalized. 
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vibration from iodide adsorbed on tlie Ag surface. Intensity-invariant bands resulting from 

normalization at 220. 619. 1002, and 1050 cm"' are from polystyrene. The complex 

resonance character of the intensities of different overtones can be clearly seen. As the 

incident frequency was tuned to higher energies through the excited state, each band of the 

progression successively underwent resonance enhancement. In other words, the 

maximum enhancement for the fiindamental and each overtone peaked at different 

wavelengths. Note that the excitation profile of each band exhibited two distinct maxima. 

(The spectra obtained with excitation wavelengths corresponding to the first and second 

maxima are shown in Figure 1 and Figure 2, respectively.) Additional weak emission 

features which appear in the contour plot as "ridges" between the Raman peaks represent 

resonance and relaxed fluorescence. The fluorescence bands appear to move across the 

plot occurring at different Stokes shifts, but maintaining their absolute frequency; on the 

contrary, the Raman bands remain at the same Stokes shift and follow the excitation 

wavelength. 

Two-dimensional excitation profiles composed from the 77 experimental points 

for the first four bands in the progression are presented in Figure 5. The curves for (a), 

(b), (c), and (d) represent the fiindamental band and the first, second, and third overtone 

bands, respectively. Each point on the curves corresponds to the normalized total intensity 

at the peak position after subtraction of the background. Intensities were used rather than 

integrated areas due to the different contributions from resonance Raman and resonance 

and relaxed fluorescence which varied with excitation frequency. These variations 

resuhed in a complex bandshape making integration of the peak areas ambiguous. 
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Figure 5. Excitation profiles composed fi-om the 77 experimental points for the following 
bands in the Raman progression; (a) fundamental, (b) first overtone, (c) second overtone, 
(d) third overtone. Insert; Enlarged view of the curve in (d). 
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Because the width of the Raman bands is expected to be independent of the excitation 

wavelength, the use of peak intensities is equally illustrative of the Raman excitation 

profile as the use of integrated areas would be. 

Only two resonances in the excitation profile for each band are apparent from 

Figure 5. The shifts between the first and second resonances for four bands in the Raman 

spectrum are summarized in Table I. The two resonances and the shift between maxima 

of ca. 370 cm"', equivalent to three quanta of the fimdamental vibration, suggests that a 

significant displacement exists for the potential minimimi of the excited electronic state 

relative to that of the ground electronic state. According to the Franck-Condon principle, 

the vertical transition of the emission process is most probable to occur from the tuming 

points along the excited state surface.!^ A displacement of the potential minima relative 

to each other leads to two vertical transitions from the excited state to the ground state 

which have different energies, manifested in the excitation profile by two resonance 

maxima. 

Table I. Shifts between the first and second resonances in the excitation profile for 

Band in the Progression Shift between 1st and 2nd Resonances, 
Acm"' 

1 (344f 
2 365 
3 369 
4 372 

^ Reflects uncertainty in determining the position of the maximum (see text). 
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Table II. Shifts between resonances in the excitation profile for adjacent bands in the 
Raman progression. 

Bands in the Progression 1st Resonance, 2nd Resonance, 
Acm"' Acm"' 

2 1 102 (123)" 
3 2 120 124 
4 3 122 125 

® Reflects uncertainty in determining the position of the maximum (see text). 

The single resonances for each successive band in the progression appeared blue-

shifted from the previous ones. The shifts between resonances for adjacent bands, 

determined from Figure 5, are summarized in Table n. To a first approximation, the shift 

of ca. 123 cm"' corresponds to the spacing between vibronic levels in the excited 

electronic state. The fact that the vibrational frequency in the ground and excited states 

are similar mdicates little change in the shape of the excited state potential energy surface 

relative to that in the ground state. This result is highly unusual for a simple diatomic 

molecule, but is reasonably well explained by the model of I2 adsorbed on a small Ag 

cluster. Because the second resonance for the fimdamental band (Figure 5a) appeared to 

be overlapped with the first resonance, its position was assumed to be at 418.7 nm, 

consistent with the shifts between first and second resonances of the other bands in the 

progression. Uncertainty in the calculated values resulting from this assumption is noted 

in the Tables by parentheses. 

In addition to the two resonances characteristic for the excitation profile for every 

band, another resonance at 415.0 nm was observed for the third overtone in the 
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progression (Figure 5d and Figure 5 Insert). The apparent increase in the intensity at the 

position of the third overtone in the Raman spectrum is not due to an increase in Raman 

scattering per se but rather is due to a broad fluorescence band which contributes to the 

overall intensity as it moves through the unchanged, sharp Raman peak at different 

excitation wavelengths. In constructing the excitation profiles, no discrimination was 

made between contributions from different processes such as resonance Raman and 

resonance and relaxed fluorescence to the overall intensity of the emission. Therefore, an 

additional peak appeared in the excitation profile for the third overtone. The nature of the 

fluorescence will be discussed below. 

The strongest resonance in the excitation profile was observed for the fundamental 

band. As the vibrational quantirai number of the overtones increased, the strength of the 

resonance decreased rapidly (Figure 5). Such behavior indicates that the electronic 

transition which causes the resonance enhancement of the Raman scattering is centered 

around the first vibronic level of the excited state. The resonances also exhibit 

significant broadening on the order of 5-6 nm (ca. 300 cm"') which is significantly larger 

than the spacing between vibronic levels of the excited state (ca. 123 cm"') and two orders 

of magnitude larger than the width of vibronic levels in the ground state (ca. < 2.5 cm"'). 

This broadening represents the electronic inhomogeneity of the system due to interactions 

of the I2 species with different sized Ag clusters, as described previously in detail.^ 

A remarkable feature of the Raman progression is the extremely narrow 

bandwidths of the fundamental and overtone bands. The measured bandwidths were 

typically less than 3 cm"', but the actual width of the Raman transition could not be 
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accurately determined because of instrument limitations. The instrument function was 

limited by pixel resolution of ca. 2.5 cm"'. When a Raman band was overlapped with the 

instrument function, both widths coincided indicating that the width of the Raman 

transition is much narrower than 2.5 cm"'. Figure 6a. The shape of the fundamental band 

was readily fit by the shape of the instrument function. Whereas, the first and second 

overtones were found to exhibit an additional broad pedestal. This fact led to spectral 

bandshape analysis using curve fitting routines. The result of the curve fitting to the 

fundamental and first two overtones is shown in Figure 6b. A nearly ideal fit of the 

fundamental band required only a single Lorentzian shape. However, all overtones in the 

progression required both a sharp Lorentzian and a much broader Gaussian component. 

Recognizing the ambiguity of the curve fitting routine, other combinations of sharp and 

broad components were also considered. Sharp and broad Lorentzians as well as a sharp 

Gaussian and a broad Lorentzian resulted in an excellent fit to the observed bandshape. 

Less satisfactory fits were obtained with two Gaussian components. Regardless of the line 

shape of the components, two components were always required to reconstruct the shape 

of the observed Raman bands. This trend was consistent for Raman spectra obtained with 

different excitation wavelengths. In addition, the broad component appeared to be shifted 

2-5 cm"' toward lower fi'equencies relative to the sharp feature. Both of the components 

tracked simuhaneously with the excitation wavelength across the entire resonance profile. 

Even though both bands are attributed to Raman scattering, the phenomena causing their 

appearance are unclear. 

Further analysis of the shape of the bands in the overtone progression revealed 

contributions fi-om different emission processes. The presence of two weak bands which 
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Figure 6. Bandshape analysis of the fundamental, first overtone, and second overtone 
bands of the Raman progression: (a) comparison of the Raman bands with the 
experimental instrument function and (b) calculated narrow Lorentzian and broad 
Gaussian components from fitted curves for the Raman bands. Excitation wavelength was 
416.6 nm. 



www.manaraa.com

121 

behave like relaxed fluorescence (a transition from the lowest vibronic level of the excited 

state) is depicted in Figure 7. Independent from the excitation wavelength, these bands 

maintain their position at ca. 430.0 rmi and 428.7 nm and remain nearly constant in 

intensity. On the contrary, the intensity of resonance (unrelaxed) fluorescence which 

results from the transition between higher vibronic levels of the excited state and the 

ground state is expected to be enhanced as the excitation frequency coincides with the 

particular vibronic level of the excited state.^-^^ An example of resonance fluorescence 

which was observed in the spectra of iodide adsorbed on the Ag surface is shown in 

Figure 8. The frames designated (a), (b) and (c) contain the original emission spectra 

obtained at different excitation wavelengths for which resonance fluorescence appears 

shifted to both sides of and under the Raman peak and corresponding fitted curves. As 

can be clearly seen in Figure 8b, the peak of the resonance fluorescence gains intensity 

when coincident with the Raman transition. 

CONCLUSIONS 

A detailed excitation profile of iodide adsorbed on an electrochemically-roughened 

silver surface revealed a series of resonance emission bands characteristic of resonance 

Raman scattering and resonance and relaxed fluorescence. A vibrational progression 

including a fiindamental band and up to six overtones, previously assigned to the v(I-I) 

stretch of an I2 species adsorbed on small Ag clusters, was observed at the temperatiu-e 20 

K when excited between 409 nm and 433 rmi. Low temperatures were previously found to 
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Figure 7. Excitation wavelength dependence of the resonance Raman and resonance 
fluorescence components of the emission spectrum from iodide adsorbed on the Ag 
surface: (a) 425.3 nm, (b) 424.9 nm, (c) 424.5 nm. Two fluorescence features are noted 
with an asterisk (*). 
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Figure 8. Resonance fluorescence observed in the emission spectra from iodide adsorbed 
on the Ag surface. The excitation wavelengths are (a) 415.6 nm, (b) 414.9 nm, and (c) 
414.1 nm. In each frame, the fourth overtone in the Raman progression is overlapped with 
the calculated, convolved best-fit curve. Below the data and convolved best-fit curve are 
the three components required for fitting: a narrow Lorentzian (resonance Raman), a 
broad Gaussian (resonance Raman), and a broad Gaussian (resonance fluorescence). 
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stabilize this species which dissociates at higher temperatures to re-form monoatomic 

iodide adsorbed on the silver surface. 

From the Raman excitation profile, a picture of the electronic structure of the 

surface-adsorbed I2 species was developed. Vibronic spacing in both the ground and 

excited electronic states was ca. 123 cm"', not typical behavior for simple diatomic 

molecules but consistent with the model of an ^silver complex. Significant displacement 

of the potential energy surfaces along the nuclear coordinate was suggested by the ca. 370 

cm"' spacing (three quanta) of the two resonance maxima for each band in the Raman 

progression. 

Bandshape analysis of the progression revealed several remarkable features. The 

instrument-limited bandwidth of the fundamental was measured to be 2.5 cm"'. The 

bandshape of the fundamental was readily fit by a single, sharp Lorentzian. Whereas, 

curve fitting of the overtones consistently required both a sharp and a broad feature to 

reconstruct the bandshape. Although both feattires behave like a Raman transition, the 

phenomena causing their appearance are unclear. Additional emission featiares including 

relaxed and resonance fluorescence were also observed. The intensity of the resonance 

fluorescence was shown to be significantly enhanced when the excitation fi:equency was 

tuned into a vibronic level of the excited state. 
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CHAPTER 6. GENERAL CONCLUSIONS 

The surfaces of various silver nanostructures were chemically-modified by the 

adsorption of ionic and molecular species, including iodide, bromide, and cytochrome c. 

Raman scattering, surface-enhanced Raman scattering, and UV-Vis absorption 

spectroscopies were particularly useful for studying the adsorption states and reactivities 

of these surface-modifiers. In Chapter 2, the crystal shape and structure of chemically-

prepared Ag nanostructures were analyzed using both imaging and diffiraction modes of a 

transmission electron microscope. Unmodified ("clean") silver surfaces were studied in 

order to evaluate only the bulk silver phase. Individual crystals of about 100 nm mean 

diameter had highly regular polyhedral shapes (e.g. trigonal, pentagonal, etc.) and a lattice 

constant of ca. 4.05 A, consistent with the expected value for a face-centered cubic phase 

of silver. Convergent beam electron diffraction studies revealed that the crystals were 

formed from either a single Ag phase or a multiply-twinned Ag phase. 

The adsorption of iodide and bromide ions to the surfaces of silver nanostructures 

of 20 nm mean diameter was studied in Chapter 3. Adsorption of the modifier on the 

surface of Ag colloids was confirmed fi-om surface-enhanced Raman spectra, where a 

characteristic halide-silver metal stretching vibration was observed, and firom absorption 

spectra, where monolayer coverage of the halide was followed by the disappearance of a 

charge-transfer-to-solvent band of the fi-ee iodide in solution. Extinction spectra of the 

iodide-modified colloids also revealed that adsorption causes noticeable aggregation of the 

particles in solution, manifested by a shift to lower energy and damping of the surface 

plasmon resonance band; whereas by using colloidal metal films in which the particles 
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were isolated by covalent attachment to a thiol-derivatized substrate, the iodide-modifier 

caused only damping with no apparent change in the plasmon frequency. 

Addition of the electroactive protein cytochrome c to a halide-modified Ag colloid 

resulted in the reduction of the protein. It was concluded that upon adsorption of the 

halides to the Ag surface, charge was donated to the particle as a whole which could be 

stored or donated to suitable electron acceptors. In Chapter 4, competitive binding of 

iodide ions between cytochrome c and the silver metal was observed, prompting the use of 

an uncharged, redox active indophenol dye molecule to obtain better quantitative results of 

the reduction efficiency. Two distinct processes were identified: reduction at iodide-

coverages up to one monolayer on the Ag surfaces and reduction in the presence of excess 

iodide in solution. In the former, adsorption results in partial charge transfer from iodide 

to the silver metal, forming a unique iodide-Ag surface complex which is different than 

molecular Agl. Only around 5% of the electron accepting molecules became reduced. 

While in the latter, free iodide in solution reacts with the Ag metal in a 1:1 stoichiometry 

to form molecular Agl, confirmed by the appearance of a characteristic 425 nm emission 

band. 

When the iodide-Ag surface complex was cooled to temperatures less than 150 K, 

a very strong progression with a fimdamental band at 123 cm"' and up to six overtones was 

observed in the Raman scattering with 413.1 nm excitation. The fimdamental frequency 

did not coincide with those known for polyiodides (I2,12", I3', etc.), diatomic Agl, or 

crystalline forms of Agl. A detailed excitation profile, presented in Chapter 5, was 

performed in the wavelength range 409-433 nm which revealed a series of resonance 
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emission bands characteristic of resonance Raman scattering and resonance and relaxed 

fluorescence. The conclusion was made that photoinduced formation occurred of a new Ii 

species adsorbed on small Ag clusters. 

The new I2 species adsorbed on silver surfaces might be an ideal system for 

theoretical modeling of resonance emission processes for the following reasons. It is a 

simple case of a diatomic species exhibiting only one totally symmetric mode in which 

only diagonal components of the transition polarizability are non-zero. This diatomic 

molecule has only one resonant excited state (y4-term scattering). It exists at low 

temperatures at which all molecules are in the lowest vibrational level of the ground state 

and interactions with the bath are expected to be minimal. 

Recommendations for Future Work 

Based on the present studies, there are two areas of research that deserve additional 

attention. First, chemically-prepared nanostructures of silver composed of a single 

crystalline phase should be isolated from those formed from multiple-twins. Research 

would then focus on determining the effects of grain boundaries on the optical properties 

of the particle as a whole. Second, the adsorption of bromide ions and other monolayer-

forming species on silver surfaces should be monitored at low temperatures using Raman 

spectroscopy. With the appropriate excitation wavelength, perhaps a general class of new 

species (e.g. a Br2-like surface-adsorbed diatomic) could be discovered in the resonance 

emission spectra. 
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